STORED ACTIVITIES

spike number
\[z \in \{0,1\} \]

spike phase \(x \)
STORED ACTIVITIES

spike number

\[z \in \{0,1\} \]

spike phase \(x \)

\[w_{ij} = \sum_{m=1}^{M} z_i z_j \Omega \left(x_i^{(m)}, x_j^{(m)} \right) \]
REPRESENTING UNCERTAINTY: FIRING RATES AND PHASES

Lengyel & Dayan, NIPS 2006

\[w_{ij} = \sum_{m=1}^{M} z_i z_j \Omega(x^{(m)}_i, x^{(m)}_j) \]

STORED ACTIVITIES

- Spike number: \(z \in \{0,1\} \)
- Spike phase: \(x \)

RECALLED ACTIVITIES

- Spike number: \(n \geq 0 \)
- Mean phase: \(\varphi \)
- Concentration: \(\epsilon \)
REPRESENTING UNCERTAINTY: FIRING RATES AND PHASES

Lengyel & Dayan, NIPS 2006

STORED ACTIVITIES

spike number
\(z \in \{0,1\} \)

spike phase
\(x \)

RECALLED ACTIVITIES

spike number
\(n \geq 0 \)

mean phase
\(\varphi \)

concentration
\(c \)

\[
\begin{align*}
\omega_{ij} = \sum_{m=1}^{M} z_i z_j \Omega(x^{(m)}_i, x^{(m)}_j)
\end{align*}
\]
true solution: \[P(z, x | \tilde{x}, W) \]
true solution: \(P(z, x|\tilde{x}, W) \)

variational approximation: \(Q(z, x; n, \phi, c) = \prod_i q(z_i, x_i; n_i, \phi_i, c_i) \)
true solution: \(P(z, x|\tilde{x}, W) \)

variational approximation: \(Q(z, x; n, \phi, c) = \prod_i q(z_i, x_i; n_i, \phi_i, c_i) \)
true solution: \[P(z, x | \tilde{x}, W) \]

variational approximation: \[Q(z, x; n, \phi, c) = \prod_i q(z_i, x_i; n_i, \phi_i, c_i) \]

adjust spike numbers, phases and concentrations so that \(Q \) best matches \(P \)
true solution: \(P(z, x|\tilde{x}, W) \)

variational approximation: \(Q(z, x; n, \phi, c) = \prod_i q(z_i, x_i; n_i, \phi_i, c_i) \)

adjust spike numbers, phases and concentrations so that \(Q \) best matches \(P \)
true solution: $P(z, x|\tilde{x}, W)$

variational approximation: $Q(z, x; n, \phi, c) = \prod_i q(z_i, x_i; n_i, \phi_i, c_i)$

adjust spike numbers, phases and concentrations so that Q best matches P

network dynamics implements gradient ascent on KL divergence between Q and P

$$
\frac{d}{dt} n_i \propto \frac{\partial}{\partial n_i} \text{KL}[Q(z, x; n, \phi, c) || P(z, x|\tilde{x}, W)]
$$

$$
\frac{d}{dt} \phi_i \propto \frac{\partial}{\partial \phi_i} \text{KL}[Q(z, x; n, \phi, c) || P(z, x|\tilde{x}, W)]
$$

$$
\frac{d}{dt} c_i \propto \frac{\partial}{\partial c_i} \text{KL}[Q(z, x; n, \phi, c) || P(z, x|\tilde{x}, W)]
$$
true solution: \(P(z, x|\tilde{x}, W) \)

variational approximation: \(Q(z, x; n, \phi, c) = \prod_i q(z_i, x_i; n_i, \phi_i, c_i) \)

mean phase dynamics

\[
\frac{d}{dt} \phi_i \propto \ldots + \sum_j n_j c_j w_{ij} \frac{\partial}{\partial \phi_i} \Omega(\phi_i, \phi_j)
\]

same as before + modulation by burst strength

adjust **spike numbers**, **phases** and **concentrations** so that \(Q \) best matches \(P \)
a single trial
PERFORMANCE OF THE RATE & PHASE NETWORK
Lengyel & Dayan, NIPS 2006

a single trial

recall of phases

Máté Lengyel: Episodic memory: why and how?
PERFORMANCE OF THE RATE & PHASE NETWORK
Lengyel & Dayan, NIPS 2006

a single trial

recall of phases

recall of rates
TESTING THE PREDICTIONS
PRELIMINARY IN VITRO DATA

Máté Lengyel: Episodic memory: why and how?

http://www.eng.cam.ac.uk/~m.lengyel
UNCERTAINTY SIGNALS PREDICT ERROR
Lengyel & Dayan, NIPS 2006
UNCERTAINTY SIGNALS PREDICT ERROR
Lengyel & Dayan, NIPS 2006

burst strength → phase errors

burst strength
- 0.05
- 0.2
- 0.4
- 0.7

Frequency

Error in firing phase

0 0
-π π
UNCERTAINTY SIGNALS PREDICT ERROR
Lengyel & Dayan, NIPS 2006

burst strength \rightarrow phase errors
firing rate \rightarrow rate errors

burst strength
- 0.05
- 0.2
- 0.4
- 0.7

Error in firing phase

Frequency

0.6
0.5
0.4
0.3
0.2
0.1
0

-\pi
0
\pi

Stored firing rate

0
0.2
0.4
0.6
0.8
1

0
0.2
0.4
0.6
0.8
1

Retrieved firing rate
UNCERTAINTY SIGNALS PREDICT ERROR
Lengyel & Dayan, NIPS 2006

burst strength \rightarrow phase errors

firing rate \rightarrow rate errors

in vitro data

Lengyel & Dayan, NIPS 2006

in vitro data
CONCLUSIONS
CONCLUSIONS

- normative models can go a long way to understand the fundamental challenges involved in learning and memory and how the brain might solve them
CONCLUSIONS

- normative models can go a long way to understand the fundamental challenges involved in learning and memory ...
 ... and how the brain might solve them

- Bayesian inference
CONCLUSIONS

- Normative models can go a long way to understand the fundamental challenges involved in learning and memory ...
 ... and how the brain might solve them

- Bayesian inference
 - is appropriate for formalising the computational task
CONCLUSIONS

- normative models can go a long way to understand the fundamental challenges involved in learning and memory ...
 ... and how the brain might solve them

- Bayesian inference
 - is appropriate for formalising the computational task
 - provides an upper bound on performance
CONCLUSIONS

- normative models can go a long way to understand the fundamental challenges involved in learning and memory ...
 ... and how the brain might solve them

- Bayesian inference
 - is appropriate for formalising the computational task
 - provides an upper bound on performance
 - may be the solution that is (approximately) implemented in the brain
CONCLUSIONS

- normative models can go a long way to understand the fundamental challenges involved in learning and memory and how the brain might solve them

- Bayesian inference
 - is appropriate for formalising the computational task
 - provides an upper bound on performance
 - may be the solution that is (approximately) implemented in the brain

- in many cases, algorithmic constraints may favor solutions that are far from Bayes-optimal
CONCLUSIONS

- normative models can go a long way to understand the fundamental challenges involved in learning and memory ... and how the brain might solve them

- Bayesian inference
 - is appropriate for formalising the computational task
 - provides an upper bound on performance
 - may be the solution that is (approximately) implemented in the brain

- in many cases, algorithmic constraints may favor solutions that are far from Bayes-optimal

- learning and memory are not the same
CONCLUSIONS

- normative models can go a long way to understand the fundamental challenges involved in learning and memory and how the brain might solve them

- Bayesian inference
 - is appropriate for formalising the computational task
 - provides an upper bound on performance
 - may be the solution that is (approximately) implemented in the brain

- in many cases, algorithmic constraints may favor solutions that are far from Bayes-optimal

- learning and memory are not the same

- even episodic memory retrieval is a probabilistic inference task
Máté Lengyel: Episodic memory: why and how?

BCCN 2009, 3 October 2009

http://www.eng.cam.ac.uk/~m.lengyel

<table>
<thead>
<tr>
<th>COLLABORATORS</th>
<th>theory</th>
<th>in vitro experiments</th>
<th>in vivo experiments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peter Dayan</td>
<td></td>
<td>Ole Paulsen</td>
<td>Francesco Battaglia</td>
</tr>
<tr>
<td>Gatsby, UCL</td>
<td></td>
<td>Jeehyun Kwag</td>
<td>U Amsterdam</td>
</tr>
<tr>
<td></td>
<td></td>
<td>U Oxford</td>
<td></td>
</tr>
</tbody>
</table>
COLLABORATORS

Peter Dayan
Gatsby, UCL

Ole Paulsen
U Oxford

Jeehyun Kwag

Francesco Battaglia
U Amsterdam

theory

in vitro experiments

in vivo experiments

postdoc position available, see
http://learning.eng.cam.ac.uk
OPTIMAL PHASE-BASED INTERACTION: THE PHASE RESPONSE CURVE

spike timing-dependent plasticity: Ω

coupling function: H

phase response curves

- $w=1$
- $w=2$
- $w=3$
- $w=4$
ROBUSTNESS OF RECALL PERFORMANCE

asymmetric STDP

Synaptic weight change

Average error (rad)

$t_{\text{pre}} - t_{\text{post}}$ (ms)

Number of stored memories

- input only
- antisym, matched
- weakly asym, non-matched
- strongly asym, matched
ROBUSTNESS OF RECALL PERFORMANCE

asymmetric STDP

![Graph showing synaptic weight change over time](image)

![Graph showing average error over number of stored memories](image)

sparse connectivity

![Graph showing average error over number of stored memories](image)
ROBUSTNESS OF RECALL PERFORMANCE

asymmetric STDP

sparse connectivity

storage noise

Máté Lengyel: Optimal memory storage in neural networks
http://www.eng.cam.ac.uk/~m.lengyel

Budapest Computational Neuroscience Forum, 5 January 2009
BURST STRENGTH \((\text{SPIKE NUM} \times \text{CONC}) = \text{CONFIDENCE}\)

IN VIVO DATA
BURST STRENGTH (SPIKE NUM × CONC) = CONFIDENCE

IN VIVO DATA
BURST STRENGTH (SPIKE NUM × CONC) = CONFIDENCE

IN VIVO DATA

- Black circles: spikes
- Red circles: mean phase within theta cycle
BURST STRENGTH (SPIKE NUM × CONC) = CONFIDENCE

IN VIVO DATA
BURST STRENGTH (SPIKE NUM \times CONC) = CONFIDENCE

IN VIVO DATA

- spikes
- mean phase within theta cycle
BURST STRENGTH (SPIKE NUM × CONC) = CONFIDENCE

IN VIVO DATA

- spikes
- mean phase within theta cycle
BURST STRENGTH (SPIKE NUM x CONC) = CONFIDENCE

IN VIVO DATA

Position

Phase

● spikes

mean phase within theta cycle

‘true’ phase = avg. of mean phases across trials
BURST STRENGTH (SPIKE NUM × CONC) = CONFIDENCE

IN VIVO DATA

- spikes
- mean phase within theta cycle
- ‘true’ phase = avg. of mean phases across trials
- ‘error’ = mean - ‘true’ phase
BURST STRENGTH (SPIKE NUM × CONC) = CONFIDENCE
IN VIVO DATA

- **Phase**
- **Position**

- **Spikes**
- **Mean phase within theta cycle**
- **'True' phase** = avg. of mean phases across trials
- **'Error'** = mean - 'true' phase

Burst strength (spikes / cycle):
- 0–0.5
- 0.5–1.5
- 1.5–2.5
- 2.5–3.5
- 3.5–4.5

Frequency

http://www.eng.cam.ac.uk/~m.lengyel