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Abstract. The hippocampus of rodents seems to play a central role in
navigation: place cells are prone to serve as elements of a cognitive map.
The hippocampus of primates is apparently involved in episodic memory
processes. Here we show how the hippocampi of different species (with
their anatomy and physiology being considerably similar) can fulfill both
purposes. A network was built from simple rate neurons, synaptic weights
were modified by a batch version of the coincidence-based Bienenstock—
Cooper-Munro learning rule. The network was trained with temporally
contiguous sensory stimuli, and then tested in two different paradigms:
(1) for navigational performance, place field profiles were evaluated to
allow comparison with experimental data; (2) for memory performance,
associative capability was assessed. The same neuron network was found
to be able to show place cell properties and function as episodic memory,
even when trained with non-topographical stimuli.

1 Introduction

Only few investigators have yet addressed directly the question, how the hip-
pocampi of different species, showing remarkable anatomical and physiological
similarity, (or even the hippocampus of the same species) meet demands made
by two different functions: navigation and episodic memory. Some of these inves-
tigations give only a qualitative description on how this two-fold function could
be achived [10, 12]. Computational models are ideal for making quantitative pre-
dictions, but those already dealing with this problem did not attempt to test
their network explicitly on both tasks [14, 13, 2]. Quantitative measurements on
place cells (firing rate profiles, time necessary to establish place fields, etc.) pro-
vide a good basis for assessing navigational performance (although intact place
cells were found under conditions when navigation was heavily impaired, see [8]).
Episodic memory, however, is more loosely defined [3]. From the various defini-
tions, two criteria can be postulated on a network to function as an episodic
memory buffer: it has to be able to perform pattern completion (episodes can



be recalled from their fragments) and to make cross-associations between mem-
ories (recall of an episode leads to the recall of preceding or successive episodes
— sequence learning is a prominent demonstration of the latter [5, 7, 17], but is
usually restricted to associating from earlier to later memory traces).

Another key problem of hippocampal models is the choice of input. Most
models use topographical inputs where they presume the similarity of stimuli
perceived by the animal at adjacent locations, i.e. the closer two locations are
the more similar input patterns belong to them [16, 6, 4]. This approach is ideal
for place cell modeling but does not seem to be realistic when addressing episodic
memory: it is hard to see why input patterns belonging to consecutive episodes
would be more similar than those belonging to temporally more distant events.
Thus, as a “worst case” presumption, non-topographical inputs should rather be
picked, i.e. the correlation of subsequent stimuli should be minimal.

Based on these considerations we built a neural network that was fed by non-
topographical input during training, when a rat was running around on a circular
track and thus input sequences were repeated several times. After training, the
network was tested both for navigational performance (indicated by properly
formed place fields), and for episodic memory performance (bidirectional cross-
association between memory traces). This way we intended to directly show
under strict conditions (same network, same non-topographical input, two dif-
ferent performance measures) how the apparently two different functions of the
hippocampus can be reconciled.

2 Methods

2.1 Network dynamics

The model network of CA3 pyramidal neurons consisted of N = 40 units. Cells
that had a similar afferentation pattern were grouped into a single unit and
characterized by a single scalar, the mean firing rate in the group. Activity
values of units were arranged into an activity vector a. Activity dynamics was
described by the following equation:

a(t+ 1) = cWal(t) + ci(pos(t)) , (1)

where W is the weight matrix of recurrent connections, i is the input vector of
external stimulation and ¢ = 1 is a scale factor.

Connection weight between two units was considered as the mean of individ-
ual connection strenghts between neurons of the units. A linear version of the
Bienenstock—Cooper—Munro learning rule [1] applied on recurrent networks was
used to train connections:
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where ¥ is an unlearning factor and (a) is the time average of activities. Here
we used a batch version of this learning rule, meaning that connection weights



were updated after £ = 100 long epochs of iterations without weight changes
(for a derivation of this formula, see [15]):

y t+E 9 t+E
W(t+E) =Wt —uW(H) + 5 > (a(t’)—E > a(t")> a’(t) , (3)
tr=t+1 ' =t4+1

where p is a decay time constant, and v is learning speed. Elements of W were
always kept non-negative, diagonal elements were kept at a fixed value of f = 0.8,
and off-diagonal elements were initialized to 0.

2.2 Stimulus

External stimulus to the network depended on the position of the modeled an-
imal. We examined a rat exploring a one-dimensional circular track in discrete
time and space. The circle was divided into P = 40 locations. Position on the
track was described by pos(t). During exploration the rat moved in one direction
along the track, proceeding one step forward with p probability and staying at
its position with 1 — p probability in each time step.

To describe preprocessed information about the environment we assigned an
arbitrary input vector to each position: i(post(t)). Input vectors were uncorre-
lated, that was achieved by stimulating only one unit per position and by that
each unit was only stimulated in one position (the “driving” position of the
unit, note that units were just defined on the basis of common input, see previ-
ous section), and for the sake of clarity units were ordered based on their driving
positions:

1 ifk = pos(t),

0 otherwise, k=1,2, ..N (4)

intpos(t) = {

where i (pos(t)) is the kth element of i(pos(t)).

2.3 Evaluation of performance

During training the rat explored the track for Ttraining = 1000 time step. After
training, connections were no longer modified and performance of the network
was assessed on two different tests. For measuring navigational performance, the
rat moved around the track for an other Tiogt, = 8000 time steps, and activity
profiles of units were calculated corresponding to experimental characterization
of place cell firing profiles [11]. To test memory performance, the network was
presented the same input vector for T}ngt, = 1000 simulation steps and activities
of cells at the end of this period were recorded. This procedure was repeated for
every input vector that was encountered by the network during the training
session.

A four dimensional parameter exploration was performed on parameters v, u,
pand 9. At v = 0.3, p = 0.5, p = 0.1 and ¥ = 3.2 parameter values W was found
to be convergent, and the network sufficiently reproduced the experimental place
field data [11] and its memory performance was also satisfactory. This parameter
set was used in further simulations.



3 Results

When memory performance of the initial network was examined, each unit re-
sponded only to one input vector and was not affected by other inputs (Fig. 1A).
Navigational performance was similarly poor, but due to high self excitation and
unidirectional movement of the rat, each unit had a small tail of activation on
positions following its driving position (Fig. 1B).
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Fig. 1. Performance of the network before training. A: Memory performance. Develop-
ing unit activities after the input pattern belonging to position 20 was presented: only
unit no. 20 showed activity. (Similar results were obtained with all inputs.) B: Position
dependent activity (place field) of unit no. 20. (Similar results were obtained for all
units.)

During exploration, spreading of activities could be observed (data not shown):
activity of units began gradually earlier and lasted longer at later phases of ex-
ploration than at the beginning. This was caused by potentiation of recurrent
connections between units, as units began to recieve excitation through their
intra-network connections well before and after they received external stimula-
tion at their driving position, and in turn, due to the coincidence-based learning
rule, this spreading lead to further potentiation of recurrent synapses.

Memory and navigational performance of the trained network was different
from the initial network. Stimulating the network with an input vector, not
only directly driven units showed activity but also units that were driven by
stimuli experienced consequently either earlier or later during exploration (Fig.
2A). Similarly, when navigation performance was tested, unit activity did not
only occur in the driving position but also at adjacent locations (Fig. 2B), most
importantly at locations ahead of the driving position, thus producing realistic
firing profiles [11], and reproducing the experience-dependent expansion and



backward-shifting of place fields [9]. Note, that the effects of self-excitations
(seen on Fig. 1B) added to the activity at successive positions.
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Fig. 2. Performance of the network after training. A: Memory performance. Developing
unit activities after the input pattern belonging to position 20 was presented: units
driven by preceding and successive inputs were also activated (Similar results were
obtained with all inputs.) B: Position dependent activity (place field) of unit no. 20.
Note, that its place field expanded asymmetrically backwards compared to its initial
size and position of center of mass. (Similar results were obtained for all cells.)

4 Conclusions

We have shown that consistent reocurrence of sensory input patterns may convey
enough information to establish place sensitive firing patterns. We found a good
match between our model results and experimental place field data. Using non-
topographical input vectors we did not assume similarity of consecutive stimuli,
thus examining episodic memory properties became available in the same net-
work. Presenting an input vector belonging to an episode to the network resulted
in partial recall of earlier and later episodes. Whith this results the same network
was shown to have place cell properties and function as episodic memory. This
might allow an interpretation that the hippocampus is a more general memory
system and is not confined to solve only spatial problems.
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