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Summary

When we have learned a motor skill, such as cycling or ice-
skating, we can rapidly generalize to novel tasks, such as

motorcycling or rollerblading [1–8]. Such facilitation of
learning could arise through two distinct mechanisms by

which the motor system might adjust its control parameters.
First, fast learning could simply be a consequence of the

proximity of the original and final settings of the control
parameters. Second, by structural learning [9–14], the motor

system could constrain the parameter adjustments to
conform to the control parameters’ covariance structure.

Thus, facilitation of learning would rely on the novel task

parameters’ lying on the structure of a lower-dimensional
subspace that can be explored more efficiently. To test

between these two hypotheses, we exposed subjects to
randomly varying visuomotor tasks of fixed structure.

Although such randomly varying tasks are thought to
prevent learning, we show that when subsequently pre-

sented with novel tasks, subjects exhibit three key features
of structural learning: facilitated learning of tasks with the

same structure, strong reduction in interference normally
observed when switching between tasks that require oppo-

site control strategies, and preferential exploration along
the learned structure. These results suggest that skill gener-

alization relies on task variation and structural learning.

Results and Discussion

Motor learning is often regarded as a process of learning a new
mapping from sensory inputs to motor outputs [1–8]. Such
mappings can be represented, for example, by simple feed-
forward neural networks, and learning can be achieved by
adjusting synaptic weight parameters in these networks
(e.g., radial basis function networks) [2, 6, 15, 16]. The solution
of a control problem can then be represented as a setting of
these parameters—Figure 1A shows a schematic of a simple
two-parameter system. For example, the red setting could
be the solution for riding a racing bike, and the blue setting
could be the solution for riding a mountain bike. Learning the
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control process of a mountain bike when having already
learned that of a racing bike corresponds then to changing
the parameter setting from red to blue. Thus, learning
becomes a search through parameter space. How could we
speed up this learning process? Clearly, if the old and new
parameter settings are close to each other in parameter space,
then learning can be fast. However, there is another possible
way to speed up learning. If we have ridden many different
types of bicycles, we might have extracted general rules for
how the control parameters covary for different bicycles.
That is, the set of bicycles may not span the entire parameter
space, but lie on a low-dimensional subspace (e.g., the thick
black line in Figure 1A), termed a structure. Learning such
a structure would be beneficial in guiding exploration of the
parameter space for a new bicycle. It would allow us to intro-
duce a new metaparameter (with setting m) that adjusts the
control parameters to move along the lower-dimensional
structure in parameter space (Figure 1B). Therefore, when
we are presented with a new task on the same structure, the
search is restricted to a subspace of the full parameter space
(e.g., the control subspace for the class of all bikes), thereby
speeding up learning.

Such structural learning [9–14] would have three clear bene-
fits. First, by reducing the search space from a high-dimen-
sional space to a low-dimensional space, the efficiency of
any learning algorithm will be dramatically improved [17].
Therefore, we expect structure-specific facilitation for tasks
that conform to a learned structure; that is, learning should
be faster compared to that for tasks that lie off the structure
(Figure 1A, green setting). Second, when two tasks that require
opposite control strategies, such as opposing visuomotor
rotations, are learned consecutively, the first task makes it
more difficult to learn the second task (anterograde interfer-
ence), and the second task wipes out memory of the first
(retrograde interference) [18, 19]. However, if two opposing
perturbations (e.g., 660� visuomotor rotations) could be
learned as part of the same structure (e.g., rotation structure),
then we would expect a low-dimensional, high-speed pathway
between the parameter settings for the two opposing pertur-
bations. This should be reflected in reduced anterograde and
retrograde interference between opposing tasks (structure-
specific interference reduction). Third, when moving between
tasks belonging to the same structure, the controller should
preferentially explore along the structure (the thick black line
in Figure 1A) and reduce deviations from the structure. More-
over, for a task that lies off the current structure (green setting),
the initial exploration (green arrow when starting from red disk)
should still lie preferentially along the structure (structure-
specific exploration).

To investigate structural learning, we devised a series of
experiments in which subjects were exposed to visuomotor
transformations in different virtual reality environments.
Numerous studies have shown that subjects can rapidly adapt
to a fixed visuomotor transformation, such as a rotation
induced by prism glasses [7]. Here, however, we varied the
parameters of such visuomotor transformations randomly
over trials, while leaving the structure of the transformation
the same. For example, we randomly varied the rotation angle
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(the parameter) of a visuomotor rotation (the structure)
between the actual and the visually perceived location of the
subject’s hand. In such randomly varying situations, previous
studies suggest that subjects cannot represent these multiple
transformations and only learn the average [20–25]. Here, we
introduce probe trials to investigate whether, despite the
apparent lack of learning, subjects show evidence of structural
learning.

Learning of Visuomotor Rotations
To test for structure-specific facilitation, we exposed a group of
subjects to an extended period (800 trials) of visuomotor rota-
tions during planar reaching, with the rotation angle varying
randomly. The rotation angle changed every eight trials (drawn
uniformly from between 290� and +90�), and within these trials,
each of the eight possible targets was presented once in
a pseudorandom order (see Supplemental Experimental
Procedures, available online, for details). A control group per-
formed similarly but without a visuomotor transformation.
Both groups were then exposed to a fixed visuomotor rotation
of +60�. We examined learning of the +60� rotation on the basis
of two error measures. First, we analyzed the initial angular
error (200 ms after movement onset) to assess learning of the
feed-forward control command (Figures 2A–2C). Second, we
calculated a cumulative-error measure over the entire trajec-
tory to assess the joint learning effect of feed-forward and feed-
back control (Figures 2D–2F). Compared to the controls, the
random rotation group showed significant (p < 0.01, Wilcoxon
rank-sum test on mean error over the first ten trials) facilitation
of feed-forward learning in the +60� rotation block (Figure 2A,
red versus blue). Moreover, the random rotation group gener-
ally moved faster, and movement durations were accordingly
reduced in this group (p < 0.001, Wilcoxon rank-sum test on
mean duration). These faster movements were also more accu-
rate overall, as can be seen in the cumulative-error measure
computed for the entire movement trajectories (Figure 2D,
red versus blue, p < 0.001, Wilcoxon rank-sum test on mean
error over the first ten trials). Thus, random rotation experience
not only led to facilitated feed-forward learning of rotations, but
also to improved feedback control.
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Figure 1. Schematic Diagram of Structural Learning

(A) The task space is defined by two parameters, but for the given task, only

certain parameter combinations occur (black line). This relationship is indi-

cated by the curved structure, which can be parameterized by a one-dimen-

sional metaparameter m. However, a parametric learner that is ignorant of

the structure has to explore the full two-dimensional space when readjust-

ing the parameter settings.

(B) A structural learner, in contrast, takes the relationship between the

parameters into account. By adjusting only the metaparameter m, the

learning problem is effectively one-dimensional.
To rule out the possibility that this facilitation was simply due
to exposure to a similar rotation angle in the directly preceding
rotation blocks of the random rotation group, we correlated the
movement error of the first trial in the +60� rotation block with
the rotation angle of the last two random blocks preceding
the +60� block. We found no significant correlation between
initial movement error in the +60� rotation block and previous
rotation angles (r2 < 0.07 for the preceding random block and
r2 < 0.001 for the penultimate random block). Moreover, the
mean rotation angle before the +60� rotation block was 212�

(for the penultimate block it was 26�), which means that even
if there had been a strong correlation, it could have only been
to the disadvantage of the random rotation group. Therefore,
the strong facilitation effect cannot be explained by a simple
memorization of the directly preceding rotation trials. To
further test that the observed facilitation is also not a net effect
of memorizing all previous rotation experiences close to +60�

(see below for the case of 260� rotations), we introduced
another group that experienced the same amount of 660� rota-
tions in the exposure phase as the random rotation group.
Whenever the randomly chosen angle fell in the range +50�

and +70� or 250� and 270�, the subjects experienced a +60�

or 260� rotation, respectively; otherwise, they experienced
a random linear transformation composed of a rotation,
a shearing, and a scaling (see Supplemental Experimental
Procedures for details). Thus, this random linear group experi-
enced the same amount of memorable 660� rotations;
however, this was not in the context of a rotation structure,
but of a much less constrained linear transform structure. We
found that the random linear group performed worse than the
random rotation group in the +60� rotation block (p < 0.01),
both in terms of feed-forward learning and feedback control
(Figures 2A and 2D, green versus red). In fact, the cumulative
error of the random linear group was more similar to that of
the naive control group (Figure 2D, green versus blue), which
suggests that the subjects did not benefit from previous 660�

rotation trials that were embedded in the random linear struc-
ture. Their feed-forward learning was even slower than the
naive controls’ errors (Figure 2A, green versus blue), suggest-
ing that the random linear group had mainly learned to rely on
feedback control.

After the +60� rotation block, all three groups were exposed
to the opposite visuomotor rotation of 260�. The naive control
group showed a significant decrement in feed-forward
learning (Figure 2B, blue) compared to the learning of the
+60� (Figure 2A, blue), consistent with many studies that
have shown anterograde interference between opposing
visuomotor rotations [18, 19]. We observed the same interfer-
ence effect for the random linear group (Figure 2B, green).
Although the random rotation group had learned the +60� rota-
tion better than the other groups, they showed a significant
reduction (p < 0.01) in interference (Figure 2B, red). When
comparing the cumulative error that also takes feedback
control into account (Figure 2E, red), the interference reduction
of the random rotation group was even more pronounced (p <
0.001) compared to that of the other two groups (Figure 2E,
blue and green).

Finally, all three groups were exposed to the original +60�

rotation (Figures 2C and 2F). Again, we see a trend in the initial
learning of the second +60� rotation block (Figure 2C, red
versus blue) showing that feed-forward learning in the random
rotation group was facilitated compared to that in the naive
group (p < 0.02, Wilcoxon rank-sum test on mean error over
the first ten trials). This difference is more pronounced in the
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Figure 2. Structural Learning of Visuomotor Rotations

(A) Learning curves for a block of +60� rotation trials performed by a group that had experienced random rotations before (Rot-learner, red), a control group

that had only experienced movements with veridical feedback (blue), and a group that experienced random linear transforms (green). The rotation group

shows strong facilitation. The initial angular error over all subjects is shown with double-exponential fits.

(B) Learning curves for a subsequent block of 260� rotation trials performed by the same groups. The interference effect that can be seen in the control

group is strongly reduced in the rotation group.

(C) Learning curves for a subsequent block of +60� rotation trials performed by the same groups. Again, the random rotation group shows a performance

advantage in the first ten trials.

(D–F) The same effects are much more pronounced for the cumulative error computed over the entire trajectory. Facilitation (D), interference reduction (E),

and facilitation of relearning (F) are significant. The median error over all subjects and the pertinent interquartile confidence interval are shown.
cumulative error (p < 0.01, Wilcoxon rank-sum test on mean
error over the first ten trials; Figure 2F) assessing feed-forward
and feedback control. The control group and the linear random
group showed a decrement in performance compared to that in
the last few trials in the original exposure to the +60�. This retro-
grade interference was markedly reduced for the random
rotation group (Figure 2F, red). Taken together, the results of
this experiment suggest that the experience of a single struc-
ture whose parameters vary continuously over a range leads
to both structure-specific facilitation and structure-specific
interference reduction. Furthermore, this structure-specific
performance enhancement seems to have a feedback and
a feed-forward component.

Learning of Shearings versus Rotations
To test specifically for the feedback component of structural
learning, we had two groups make reaching movements to
targets under two different visuomotor transformations that
randomly changed at the start of each reach. One group expe-
rienced random rotations (rotation angles between 290� and
+90�); the other group experienced random shearings (shearing
parameters between 22.0 and +2.0; see Supplemental
Experimental Procedures for details). Occasional probe trials
that involved either 60� rotations or 1.5 shearings were intro-
duced for both groups. Subjects from the two groups
responded very differently for identical probe trials. For
example, when presented with a rotation probe trial, the rota-
tion group (red) and the shearing group (black) showed different
hand paths (Figure 3A) and velocity profiles (Figure 3C). Gener-
ally, performance was faster when the probe-trial structure was
compatible with the structure of the random trials (p < 0.001,
paired t test). Moreover, the peak positional variance across
probe trials showed a significant reduction (p < 0.005, one-
tailed F test) in probe trials that were compatible with the
learned structure, suggesting that exploration was reduced in
these trials (Figures 3E and 3F). Although both groups might
have adopted different control strategies, importantly, both
tasks required the processing of feedback information in order
to solve them. Therefore, feedback processing must be
different in these two groups depending on previous experi-
ence. This suggests that the feedback control process is not
generic but is highly dependent on the structure that subjects
had experienced within a single trial, which argues against
a nonspecific increase in feedback adaptability.
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Figure 3. Structural Learning of Rotations versus

Shearings

(A) Mean trajectories over all subjects in 60� rota-

tion probe trials performed by a group that expe-

rienced random rotations before (red) and

another group that experienced random shear-

ings before (black). The two groups react differ-

ently to the same perturbation. The trajectories

to the different targets have all been rotated

so that the cursor target is vertically above the

starting location.

(B) Mean trajectories in 1.5 shearing probe trials

performed by the same groups.

(C and D) Speed profiles for the same trials.

(E and F) Variances in the same probe trials. The

variance is reduced when subjects face a probe

trial that is compatible with the structure of their

previously experienced task.
Learning of 3D Rotations: Horizontal versus Vertical

To examine the finalkey feature of structural learning,structure-
specific exploration, we had subjects make reaching move-
ments to four targets in a three-dimensional (3D) virtual reality
environment (Figure S1). This allowed us to create two orthog-
onal visuomotor transformation structures in which subjects
experienced either random vertical rotations or random hori-
zontal rotations (see Supplemental Experimental Procedures
for details). The rotation parameter changed randomly every
four reaches, covering the full range between 260 and +60�.
We then probed learning by exposing subjects to four move-
ments of null rotation (veridical feedback) to assess average
learning and wash out any previous learning, followed by four
movements with a visuomotor rotation of 45� either in the hori-
zontal or the vertical direction. Movement error was assessed
as the angle between the target and the cursor position at
9 cm into the movement. Both groups showed structure-
specific facilitation (p < 0.01, Wilcoxon rank-sum test over
average performance in all probe blocks). For example, there
was a rapid facilitation when the horizontal rotation group expe-
rienced a horizontal rotation (Figure 4A, red) as opposed to
a vertical rotation (blue). To examine the exploration strategy
of subjects, we examined positional error at the end of the
four reaching movements (Figures 4C and 4D). We found that
the horizontal rotation group showed significantly smaller vari-
ance (p < 0.01, one-tailed F test on z deviations) in the vertical
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Figure 4. Structural Learning of 3D Rotations

(A) Angular error in probe blocks of horizontal (red) and vertical (blue) 45� rotations experienced by a group that experienced random horizontal rotations

before. There is a clear facilitation for learning the horizontal rotation. The black line indicates performance in the block of null-rotation (washout) trials

preceding the probe block.

(B) Performance error in the same probe blocks for a group that experienced random vertical rotations before. The facilitation pattern is reversed.

(C and D) Movement variance shortly before trial end for both kinds of probe blocks. The variance in the task-irrelevant direction—perpendicular to the

displacement direction—is significantly reduced for isostructural probe blocks (ellipses show the standard deviation). This suggests that subjects explored

less outside the structure they had learned during the random rotation blocks.

(E and F) Circular histograms of initial movement adaptation from the first trial of the probe block to the second trial. Subjects responded to probe blocks

from the same structure in a consistent way, correcting toward the required target. In the case of probe trials for a different structure, subjects also showed

components of learning in the direction of the previously learned structure.
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direction for probe trials of the same structure (Figure 4C, red)
as compared to the performance of the vertical rotation group
in the same trials (Figure 4D, red). Accordingly, we found
a reverse pattern in the vertical rotation group (Figure 4D, blue
compared to Figure 4C, blue; p < 0.01, F test on x deviation).
Moreover, we found the same variance patterns in the feed-
forward part of the movement (p < 0.01 in both cases;
Figure S2). This suggests that subjects adjusted the variability
of their movements so as to explore preferentially along the
previously experienced structure.

To examine the direction of exploration, we examined the
evolution of learning between the first and second probe trials
(Figures 4E and 4F). For probe trials of the same structure,
subjects showed rapid exploration along the structure
(Figure 4E, red; Figure 4F, blue). However, for probe trials of
the other structure, exploration also had components along
the direction of the previously learned structure—the hori-
zontal rotation group also showed horizontal components of
exploration when exposed to vertical rotation probe trials
(Figure 4E), whereas the vertical rotation group also showed
vertical components of exploration when exposed to hori-
zontal rotation probe trials (Figure 4F). The statistics of adap-
tation displayed in Figures 4E and 4F differ significantly
(p < 0.05, two-sample Kolmogorov-Smirnov test for absolute
angles of the red distributions and the blue distributions,
respectively). Analysis of the performance in null-rotation
(veridical feedback) trials that preceded the probe trials
(Figures 4A and 4B, black line) shows that the exploratory
behavior is not simply a consequence of incomplete washout
because the errors in the unperturbed direction observed
during the initial probe trials with unmatched structure exceed
the corresponding errors in the preceding null-rotation trials
(p < 0.005, two-sample t test). This means that subjects
actively explored this direction and did not simply exhibit
washout effects. Thus, both the group-specific exploration
and the variance modulation in feed-forward as well as in
feedback control support the concept of structure-specific
exploration.

Conclusion
Our results show that when subjects are exposed to randomly
varying tasks of the same structure, the motor control process
can extract the structure of the task and thereby exhibit struc-
ture-specific facilitation, interference reduction, and explora-
tion. This suggests that the human motor system relies on
structural learning for skill acquisition. Traditional models of
sensorimotor learning have focused on function approxima-
tion during learning of sensorimotor mappings. Typically,
learning the mapping from sensory inputs X to a motor
command U has been conceptualized as a mapping
U =

P
i wigiðXÞ, where gið,Þ are so-called basis functions and

wi are the adjustable parameters of the mapping [2, 6, 15,
16]. Such a simple model of motor learning runs into problems
in our case because of the presence of hidden variables
that vary randomly over time (e.g., the varying rotation
angle f) —the model would simply learn the average mapping
(e.g., the average over all angles). In our experiments, we delib-
erately set the expectation value of these hidden variables to
zero (i.e., <f> = 0), so that if subjects were to simply learn the
average of the experienced transformations [20–25], this
would be the identity mapping—that is, no learning of the
transformation would occur. Because subjects showed clear
improvement after random training, they must have learned
much more than the average mapping. They have learned
how to adapt efficiently to related control tasks, and our
results suggest that such facilitation is due to the common
structure of the control tasks.

Processes of metalearning have been previously reported
[26–28]. A recent study [27] has shown, for example, that
learning rates in visuomotor adaptation depend on the error
statistics. In particular, it was found that blurred visual feed-
back leads to slower adaptation rates, whereas high uncer-
tainty in the visuomotor mapping leads to higher adaptation
rates. However, this study did not examine how the structure
of the mapping might influence adaptation. In our study, we
found that uncertainty in the mapping can lead to both higher
and lower adaptation rates (red and green curves in Figure 2),
depending on the previously experienced task structure. In
a similar vein, another recent study [28] has emphasized that
facilitation of relearning a visuomotor mapping cannot be
understood as a superposition of adaptation processes in
the brain with constant adaptation rates, but rather that these
rates should be adaptive as well. We also advocate such
adaptability of adaptation rates, but the novelty in our study
is that we show that these rate changes and the accompa-
nying changes in movement variability and explorative
behavior can be understood by structural learning both in
the feed-forward and feedback component of movements.
Understanding how feed-forward and feedback processes
interact to achieve structural learning will be an interesting
area of future research [29, 30].

The principle of structural learning is not confined to the
motor system and could also govern processes of perceptual
and cognitive learning [31, 32]. For example, cognitive
‘‘learning to learn’’ phenomena, in which subjects show facili-
tation in categorization or concept learning tasks if they have
had random exposure to other items of a given category [33],
can be recast as structural-learning phenomena. Structural
learning might therefore provide a connection between motor
learning and concept learning in cognitive neuroscience,
given that scalable motor structures can be considered as
a precursor to motor concepts [34]. Ultimately, understanding
how recurrent neural networks [35] accomplish structural
learning might elucidate the neural basis of the unsurpassed
flexibility of biological controllers. In conclusion, we suggest
a novel concept of facilitated learning for skill acquisition, in
which general rules about a class of behaviors are extracted
and used to facilitate adaptation, minimize interference, and
guide exploration.

Supplemental Data

Supplemental Data include Supplemental Experimental Procedures, a theo-

retical perspective on structural learning, a neurophysiological perspective

on structural learning, and three figures and can be found with this article

online at http://www.current-biology.com/supplemental/S0960-9822(09)
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Acknowledgments

This work was supported by the Wellcome Trust, the Böhringer-Ingelheim
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