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Abstract

Humans demonstrate a remarkable ability to generate accurate and
appropriate motor behavior under many di�erent and often uncer-
tain environmental conditions. This paper describes a new modular
approach to human motor learning and control, based on multiple
pairs of inverse (controller) and forward (predictor) models. This
architecture simultaneously learns the multiple inverse models nec-
essary for control as well as how to select the inverse models appro-
priate for a given environment. Simulations of object manipulation
demonstrates the ability to learn multiple objects, appropriate gen-
eralization to novel objects and the inappropriate activation of mo-
tor programs based on visual cues, followed by on-line correction,
seen in the \size-weight illusion".

1 Introduction

Given the multitude of contexts within which we must act, there are two qualita-
tively distinct strategies to motor control and learning. The �rst is to use a single
controller which would need to be highly complex to allow for all possible scenarios.
If this controller were unable to encapsulate all the contexts it would need to adapt
every time the context of the movement changed before it could produce appropri-
ate motor commands|this would produce transient and possibly large performance
errors. Alternatively, a modular approach can be used in which multiple controllers
co-exist, with each controller suitable for one or a small set of contexts. Such a
modular strategy has been introduced in the \mixture of experts" architecture for



supervised learning [4]. This architecture comprises a set of expert networks and
a gating network which performs classi�cation by combining each expert's output.
These networks are trained simultaneously so that the gating network splits the
input space into regions in which particular experts can specialize.

To apply such a modular strategy to motor control two problems must be solved.
First how are the set of inverse models (controllers) learned to cover the contexts
which might be experienced|the module learning problem. Second, given a set
of inverse modules (controllers) how are the correct subset selected for the current
context|the module selection problem. From human psychophysical data we know
that such a selection process must be driven by two distinct processes; feedfor-
ward switching based on sensory signals such as the perceived size of an object, and
switching based on feedback of the outcome of a movement. For example, on picking
up a object which appears heavy, feedforward switching may activate controllers re-
sponsible for generating a large motor impulse. However, feedback processes, based
on contact with the object, can indicate that it is in fact light thereby switching
control to inverse models appropriate for a light object.

In the context of motor control and learning, Gomi and Kawato [3] combined the
feedback-error-learning [2] approach and the mixture of experts architecture to
learn multiple inverse models for di�erent manipulated objects. They used both the
visual shapes of the manipulated objects and intrinsic signals, such as somatosenso-
ry feedback and e�erence copy of the motor command, as the inputs to the gating
network. Using this architecture it was quite diÆcult to acquire multiple inverse
models. This diÆculty arose because a single gating network needed to divide up,
based solely on control error, the large input space into complex regions. Fur-
thermore, Gomi and Kawato's model could not demonstrate feedforward controller
selection prior to movement execution.

Here we propose a model of human motor control which addresses these problem-
s and can solve the module learning and selection problems in a computationally
coherent manner. The basic idea of the model is that the brain contains multiple
pairs (modules) of forward (predictor) and inverse (controller) models (MPFIM).
Within each module, the forward and inverse models are tightly coupled both dur-
ing their acquisition and use, in which the forward models determine the contribu-
tion (responsibility) of each inverse model's output to the �nal motor command.
This architecture can simultaneously learn the multiple inverse models necessary
for control as well as how to select the inverse models appropriate for a given envi-
ronment in both a feedforward and a feedback manner.

2 Multiple paired forward-inverse models

2.1 Multiple forward models: Motor learning and feedback selection

Figure 1 illustrates how the MPFIM architecture can be used to learn and con-
trol arm movements when the hand manipulates di�erent objects. Central to the
multiple paired forward-inverse model is the notion of dividing up experience using
predictive forward models. We consider n undi�erentiated forward models which
each receive the current state, xt, and motor command, ut, as input. The output
of the ith forward model is x̂it+1, the prediction of the next state at time t

x̂
i
t+1 = �(wi

t; xt; ut) (1)

where wi
t are the parameters of a function approximator � (e.g. neural network

weights) used to model the forward dynamics. These predicted next states are
compared to the actual next state to provide the responsibility signal which repre-
sents the extent to which each forward model presently accounts for the behavior
of the system. Based on the prediction errors of the forward models, the responsi-
bility signal, �it, for the i-th forward-inverse model pair (module) is calculated by
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Figure 1: A schematic diagram showing how MPFIM architecture is used to control
arm movement while manipulating di�erent objects. Parenthesized numbers in the
�gure relate to the equations in the text.
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where xt is the true state of the system and � is a scaling constant. The soft-max
transforms the errors using the exponential function and then normalizes these val-
ues across the modules, so that the responsibilities lie between 0 and 1 and sum
to 1 over the modules. Those forward models which capture the current behav-
ior, and therefore produce small prediction errors, will have high responsibilities.
The responsibilities are then used to control the learning of the forward model-
s in a competitive manner, with those models with high responsibilities receiving
proportionally more of their error signal than modules with low responsibility.
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For each forward model there is a paired inverse model whose inputs are the desired
next state x�t+1 and the current state xt. The ith inverse model produces a motor

command uit as output

u
i
t =  (�it; x

�

t+1; xt) (4)

where �it are the parameters of some function approximator  .

The total motor command generated by the whole set of n inverse models is the



summation of the outputs from these inverse models using the responsibilities, �it,
to weight the contributions.
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Once again, the responsibilities are used to weight the learning of each inverse model.
This ensures that the inverse models learns the appropriate control for the context
under which its paired forward model makes accurate predictions. Although for
supervised learning the desired control command u�t is needed (but is generally not

available), we can approximate (u�t � u
i
t) with the feedback motor command signal

ufb [2].
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In summary, the responsibility signals are used in three ways|�rst to gate the
learning of the forward models (Equation 3), second to gate the learning of the
inverse models (Equation 6), and third to gate the contribution of the inverse models
to the �nal motor command (Equation 5).

2.2 Multiple responsibility predictors: Feedforward selection

While the system described so far can learn multiple controllers and switch between
them based on prediction errors, it cannot provide switching before a motor com-
mand has been generated and the consequences of this action evaluated. To allow
the system to switch controllers based on contextual information, we introduce a
new component, the responsibility predictor (RP). The input to this module, yt,
contains contextual sensory information (Figure 1) and each RP produces a predic-
tion of its own module's responsibility

�̂
i
t = �(it ; yt): (7)

These estimated responsibilities can then be compared to the actual responsibilities
�
i
t generated from the responsibility estimator. These error signals are used to

update the weights of the RP by supervised learning.

Finally a mechanism is required to combine the responsibility estimates derived
from the feedforward RP and from the forward models' prediction errors derived
from feedback. We determine the �nal value of responsibility by using Bayes rule;

multiplying the transformed feedback errors e�jxt�x̂i
tj
2=�2 by the feedforward re-

sponsibility �̂it and then normalizing across the modules within the responsibility

estimator: �̂ite
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The estimates of the responsibilities produced by the RP can be considered as prior
probabilities because they are computed before the movement execution based only
on extrinsic signals and do not rely on knowing the consequences of the action. Once
an action takes place, the forward models' errors can be calculated and this can be
thought of as the likelihood after the movement execution based on knowledge of the
result of the movement. The �nal responsibility which is the product of the prior
and likelihood, normalized across the modules, represents the posterior probability.
Adaptation of the RP ensures that the prior probability becomes closer to the
posterior probability.



3 Simulation of arm tracking while manipulating objects

3.1 Learning and control of di�erent objects

K
M

Manipulated
object

B

x

M (Kg) B (N m�1 s) K (N m�1)
� 1.0 2.0 8.0
� 5.0 7.0 4.0
 8.0 3.0 1.0
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Figure 2: Schematic illustration of the simulation experiment in which the arm
makes reaching movements while grasping di�erent objects with mass M , damping
B and spring K. The object properties are shown in the Table.

To examine motor learning and control we simulated a task in which the hand had
to track a given trajectory (30 s shown in Fig. 3 (b)), while holding di�erent objects
(Figure 2). The manipulated object was periodically switched every 5 s between
three di�erent objects �, � and  in this order. The physical characteristics of
these objects are shown in Figure 2. The task was exactly the same as that of Gomi
and Kawato [3], and simulates recent grip force-load force coupling experiments by
Flanagan and Wing [1].

In the �rst simulation, three forward-inverse model pairs (modules) were used: the
same number of modules as the number of objects. We assumed the existence of a
perfect inverse dynamic model of the arm for the control of reaching movements. In
each module, both forward (� in (1)) and inverse ( in (4)) models were implemented
as a linear neural network1. The use of linear networks allowed M , B and K to
be estimated from the forward and inverse model weights. Let MF

j ,B
F
j ,K

F
j be the

estimates from the jth forward model and M I
j ,B

I
j ,K

I
j be the estimates from the jth

inverse model.

Figure 3(a) shows the evolution of the forward model estimates of MF
j ,B

F
j ,K

F
j for

the three modules during learning. During learning the desired trajectory (Fig. 3(b))
was repeated 200 times. The three modules started from randomly selected initial
conditions (open arrows) and converged to very good approximations of the three
objects (�lled arrows) as shown in Table 1. The green, blue and red modules
converged to �, � and  objects, respectively. Table 1 shows the converged values
of the paired forward and inverse models. The table clearly shows that the within
each module the forward and inverse model captured the dynamics of the same
object. It is interesting to note that all the estimates of the forward models are
superior to those of inverse models. This is because the inverse model learning
depends on how modules are switched by the forward models.

Figure 3(b) shows the performance of the model at the beginning (left) and
end (right) of learning. The top 3 panels show the responsibility signals of green,
blue and red modules in this order, and the bottom panel shows the hand's actual
(black) and desired (green) trajectories. At the start of learning, the three modules
were equally poor and thus generated almost equal responsibilities (1/3) and were
involved in control almost equally. As a result, the overall control performance was

1Any kind of architecture can be adopted instead of linear networks
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Figure 3: (a) Learning acquisition of three pairs of forward and inverse models
corresponding to three objects. (b) Responsibility signals from the three modules
(top 3) and tracking performance (bottom) at the beginning (left) and at the end
(right) of learning.

Module M
F
j B

F
j K

F
j M

I
j B

I
j K

I
j

1 1.0020 2.0080 8.0000 1.0711 2.0080 8.0000
2 5.0071 7.0040 4.0000 5.0102 6.9554 4.0089
3 8.0029 3.0010 0.9999 7.8675 3.0467 0.9527

Table 1: Learned object characteristics

poor with large trajectory errors. However, at the end of learning, the three mod-
ules switched almost perfectly (only three noisy spikes were observed in the top 3
panels on the right), and no trajectory error was visible at this resolution in the
bottom panel. If we compare these results with Figure 7 of Gomi and Kawato [3]
for the same task, the superiority of the MPFIM compared to the gating-expert ar-
chitecture is apparent. Note that the number of free parameters (synaptic weights)
is smaller in the current architecture than the other. The di�erence in performance
comes from two features of the basic architecture. First, in the gating architecture
a single gating network tries to divide the space while many forward models splits
the space in MPFIM. Second, in the gating architecture only a single control error is
used to divide the space, but multiple prediction errors are simultaneously utilized
in MPFIM.

3.2 Generalization to a novel object

A natural question regarding MPFIM architecture is how many modules need to be
used. In other words, what happens if the number of objects exceeds the number of
modules or an already trained MPFIM is presented with an unfamiliar object. To
examine this, the MPFIM trained from 4 objects �,�, and Æ was presented with
a novel object � (its (M;B;K) is (2.02,3.23,4.47)). Because the object dynamics
can be represented in a 3-dimensional parameter space and the 4 modules already
acquired de�ne 4 vertices of a tetrahedron within the 3-D space, arbitrary object
dynamics contained within the tetrahedron can be decomposed into a weighted aver-



age of the existing 4 forward modules (internal division point of the 4 vertices). The
theoretically calculated weights of � were (0.15,0.20,0.35,0.30). Interestingly, each
module's responsibility signal averaged over trajectory was (0.14,0.24,0.37,0.26). Al-
though the responsibility was computed in the space of accelerations prediction by
soft-max and had no direct relation to the space of (M;B;K), the two vectors had
very similar values. This demonstrates the exibility of MPFIM architecture which
originates from its probabilistic soft-switching mechanism. This is in sharp con-
trast to the hard switching and deterministic mechanism of Narendra [5] for which
only one controller can be selected at a time, so that no averaging or weighting is
possible.

3.3 Feedforward selection and the size-weight illusion
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Figure 4: Responsibility predictions based on contextual information of 2-D object
shapes (top 3 traces) and corresponding acceleration error of control induced by the
illusion (bottom trace)

In this section, we simulated prior selection of inverse models by responsibility pre-
dictors based on contextual information, and reproduce the size-weight illusion.
Each object was associated with a 2-D shape represented as a 3�3 binary matrix,
which was randomly placed at one of four possible locations on a 4�4 retinal matrix
(see Gomi and Kawato for more details). The retinal matrix was used as the con-
textual input to the RP (3-layer sigmoidal feedforward network). During the course
of learning, the combination of manipulated objects and visual cues were �xed as
A-�, B-� and C-. After 200 iterations of the trajectory, the combination A- was
presented for the �rst. Figure 4 plots the responsibility signals of the three mod-
ules green, blue and red (top 3 traces) and corresponding acceleration error of the
control induced by the illusion (bottom trace). The result replicates the size-weight
illusion seen in the erroneous responsibility prediction of the green responsibility
predictor based on the contextual signal A and its correction by the responsibility
signal calculated by the forward models. Until the onset of movement (time 0),
the visual shape of A was always associated with the light mass �, and the visual
object shape of C was always associated with the heavy mass . Prior to movement



when the visual signal of A was associated with the heavy mass , the green (�)
module was switched on by the visual contextual information, but soon after the
movement was initiated, the responsibility signal from the forward model's predic-
tion dominated, and the red () module was properly selected. Furthermore, after
a while, the responsibility predictor of the modules were re-learned to capture this
new association between the objects visual shape and its dynamics.

In conclusion, the MPFIM model of human motor learning and control, like the
human motor system, can learn multiple tasks, shows generalization to new tasks
and an ability to switch between tasks appropriately.
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