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There is ample evidence that humans are able to control the endpoint impedance of their arms in response to active destabilizing force
fields. However, such fields are uncommon in daily life. Here, we examine whether the CNS selectively controls the endpoint impedance
of the arm in the absence of active force fields but in the presence of instability arising from task geometry and signal-dependent noise
(SDN) in the neuromuscular system. Subjects were required to generate forces, in two orthogonal directions, onto four differently curved
rigid objects simulated by a robotic manipulandum. The endpoint stiffness of the limb was estimated for each object curvature. With
increasing curvature, the endpoint stiffness increased mainly parallel to the object surface and to a lesser extent in the orthogonal
direction. Therefore, the orientation of the stiffness ellipses did not orient to the direction of instability. Simulations showed that the
observed stiffness geometries and their pattern of change with instability are the result of a tradeoff between maximizing the mechanical
stability and minimizing the destabilizing effects of SDN. Therefore, it would have been suboptimal to align the stiffness ellipse in the
direction of instability. The time course of the changes in stiffness geometry suggests that modulation takes place both within and across
trials. Our results show that an increase in stiffness relative to the increase in noise can be sufficient to reduce kinematic variability,
thereby allowing stiffness control to improve stability in natural tasks.

Introduction
Most tasks in daily life, from using a pencil, typing on a key-
board, or eating with a fork, involve dynamic interactions with
the environment. Humans are dexterous at such interactions.
However, in many cases, the geometry of the task makes the
interaction inherently unstable (Rancourt and Hogan, 2001; Milner,
2002a; Franklin et al., 2003a). Rancourt and Hogan (2001)
postulated that the control of the endpoint stiffness of the arm
could play an important role in stabilizing such inherently
unstable interactions. However, to change the endpoint stiff-
ness, muscular coactivation is needed (Hogan, 1984; Milner
and Cloutier, 1993; Milner, 2002b). Such muscle contraction
increases internal variability as a result of signal-dependent
motor noise (SDN) and could therefore add to any instability
(Harris and Wolpert, 1998).

Studies have shown that subjects have a limited ability to con-
trol their endpoint stiffness cognitively (Gomi and Osu, 1998;
Perreault et al., 2002). However, subjects do modulate stiffness in
response to instability generated by robotic interfaces. For exam-
ple, appropriate changes in stiffness have been seen when signif-
icant amounts of energy are added to the arm by either applying
random force pulses while subjects maintain a fixed posture

(Darainy et al., 2004) or creating a divergent force field in which
deviations from a straight line movement are actively amplified
(Burdet et al., 2001; Franklin et al., 2003b, 2004, 2007). In these
studies, the destabilizing forces are either independent of hand
position variability (Darainy et al., 2004) or increase linearly with
hand deviation (Burdet et al., 2001; Franklin et al., 2003b, 2004,
2007), such that destabilizing force variability is proportional to
positional variability. In contrast, when interacting with real-
world objects that impose stability constraints (e.g., a screwdriver),
the perturbing forces can increase supralinearly with positional er-
rors. In this case, kinematic variability must be tightly controlled
to maintain stability. It is unknown whether stiffness control is
seen in such interactions in which instability arises from purely
passive elements and noise in the motor commands. Theoretical
work suggests that, if the stabilizing forces attributable to stiffness
increase faster than the destabilizing forces attributable to SDN,
then muscular coactivation will reduce kinematic variability and
increase stability (Selen et al., 2005).

Here we examine whether subjects control the endpoint stiff-
ness of their arm to maintain stability in a natural task. Subjects
produced a force of defined magnitude and direction against
objects of different curvature, which impose different levels of
instability. The experiment was performed for two force direc-
tions. In addition to sessions in which objects of a particular
curvature were presented repeatedly, we also measured the stiffness
in sessions in which objects of different curvature were randomly
interleaved. Importantly, the required force level generated by the
subject against the objects was kept constant throughout the ex-
periment so that any changes in stiffness are independent of the
net force level. This allowed us to assess both the changes in the
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geometry of stiffness and the extent to which stiffness can be
adapted from trial-to-trial to match varying task demands.

Materials and Methods
Experiment
Six healthy, right-handed subjects (ages 23–37 years) participated in the
main study (four male, two female). Seven healthy, right-handed subjects
(ages 22–37 years) participated in a second study. Five of these subjects
completed both the main study and the second study. The institutional
ethics committee approved the experiments, and the subjects gave in-
formed consent before participating in the experiment. In the main study,
subjects participated in two experimental sessions each of !1.5 h on separate
days. The second study was performed in a single session of 1.5 h.

Apparatus. Subjects were seated in a sturdy chair (Saab seat) in front of
a planar robotic device (vBOT) (Howard et al., 2009). Their shoulders
were strapped against the backrest of the chair by a four-point seatbelt.
The subjects’ right forearm was securely coupled to the vBOT handle by
a custom-molded thermoplastic cuff (Omega Max/Plus; Promedics) that
also immobilized the wrist joint. The forearm rested on an air sled that
moved over a glass plate at chest level, constraining movement to the hori-
zontal plane and reducing shoulder and elbow motion to a single degree of
freedom each.

The position of the vBOT handle was calculated from joint-position
sensors (58SA; IED) on the motor axes. The sensors provide 30,000
pulses per revolution and, with a gearing of seven, give a nominal reso-
lution on the order of 20 !m at the handle. The velocity of the handle was
estimated by an extended Kalman filter using the joint-position readings
of the vBOT in combination with handle accelerations (EGA-F, 10 g;
Entran). The forces exerted on the handle were measured by a six-
degrees-of-freedom force sensor (Nano25; ATI), located between the

vBOT handle and the vBOT arm. The vBot was
controlled at 1000 Hz. Joint angles, handle ac-
celerations, and handle forces were sampled at
the same frequency. Veridical feedback of the
hand position and other task-relevant cues was
provided by a projection from a monitor (Ap-
ple Cinema, 30 inches, 16 ms loop latency) in a
mirror located just above the robot handle.

Experimental task. Subjects produced iso-
metric forces against simulated rigid objects
(Fig. 1). The hand position was continuously
presented to the subject by a filled circle of 0.5
cm radius. The hand representation corre-
sponded to the actual hand position except
during the perturbations when the hand repre-
sentation was frozen.

Trials were self-initiated by the subjects
moving their hand into the start circle (Fig.
1 A). The rigid object and force target (gray
square) were then presented. When the hand
contacted the object, the robot generated ap-
propriate haptic feedback of the interaction
forces. The force vector representing the force
subjects exerted on the object was displayed
(Fig. 1 B, red arrow), and the subject was re-
quired to direct this force vector into the force
target (Fig. 1C). The force target was a square
with its closest boundary at 7.5 cm and sides of
2 cm. The force vector was drawn with a scale
of 1 N " 1 cm requiring subjects to generate
between 7.5 and 9.5 N. Whenever the tip of the
force vector was within the target area, the
force target turned from gray to white. Subjects
were required to maintain the force vector con-
tinuously within the force target for a pre-
defined time (1.5–2.5 s, randomly drawn from
a uniform distribution), after which the hand
position was perturbed as part of the stiffness
estimation (Fig. 1 D) (see section on stiffness
estimation). To avoid subjects interpreting the

perturbation onset as the end of a trial and moving back to the start
region, they were required to maintain the force until the end of the
perturbation. If they failed to do so, the start region would not appear
until subjects had reproduced the desired force again.

Haptic force feedback of the hand–object interaction was simulated for a
“cup” and three circular objects of different curvature [C " (4.00, 2.00, 0.67)
cm#1] (Fig. 1E). The hand–object interaction force was simulated with a
stiff spring (90 N/cm), and the force was always perpendicular to the surface
at the interaction point. No frictional forces parallel to the surface were
simulated. This resulted in unstable interactions for the objects with positive
curvature. The cup condition is fully stable, and we plot results as though this
had a curvature of zero (although it is in fact more stable than a flat surface).
This plotting convention does not affect any statistical tests.

The main experiment was split into two sessions performed on
separate days. In this experiment, we looked at stiffness modulation
while producing force in the negative x-direction (axes shown in Fig.
1). The subject’s position relative to the hand– object interaction
point was adjusted such that the shoulder and elbow angles were 45°
and 90°, respectively, and that the shoulders were parallel to the x-axis.
After familiarization, subjects completed 120 trials for each object in each
experimental session (480 trials/d). In one session, each of the four ob-
jects was presented in blocks of 120 trials in which the block order was
randomized (“blocked”). In the other session, the objects were presented
in random order, changing from trial to trial (“random”). Half of the
subjects started with the blocked session and the remaining half with the
random session. All six subjects participated in both the blocked and
random sessions.

A second experiment was performed to investigate the modulation of
stiffness while producing forces along the positive y-direction (axes

Figure 1. Overview of the experimental setup and paradigm for the main experiment. An additional experiment was performed
with the visual and haptic scene rotated 90° clockwise. A, Visual display when the subject is not touching the rigid object. Orange
half circle represents a simulated rigid object that is fixed in space. The square is the target area, and the purple circle is the veridical
representation of the subject’s hand position. The hand is in the start area (black circle). The target area is gray, indicating that the
force vector is not in it. B, Subject touches the rigid object and feels the interaction force. The force exerted on the object is shown
to the subject as a red arrow. The start area is no longer presented. C, Same as above, but now the force vector is correctly within the
target, which becomes white. D, After a 1.5–2.5 s delay, the visual display is frozen and the hand is moved 8 mm to one of eight
positions around a circle (blue). The visual display, the perturbation positions, and the subject are not drawn on the same scale.
E,Thefourobjectswithwhichthesubjects interact.Cstandsforcurvaturewithunitcm #1.Allobjectshadthesamecolor intheexperiment.
The Cartesian axes are indicated by x and y, and the shoulder and elbow joint angles are indicated by "1 and "2.
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shown in Fig. 1). In this experiment, targets were only presented in
blocks. The subject’s position relative to the hand– object interaction
point was adjusted such that the shoulder and elbow angles were 30° and
80°, respectively. For this experiment, the required endpoint force range
was decreased to 6.5– 8.5 N. All other parameters of the experiment were
the same as in the main experiment.

Task performance. Task performance was quantified with two mea-
sures. First, the time it took a subject to finish a trial, defined as the time
the hand was in contact with the object before the force vector entered
into the target for the final occasion (because it was possible to slip out of
the target or off the object) was recorded. Second, for each trial, the mean
force vector from 500 to 1500 ms after entering the force target was
calculated.

Stiffness estimation. After the force vector was maintained within the
force target for the predefined minimal time (1.5–2.5 s), the robot
switched from force to position servo control (position gain, 120
N/cm; velocity gain, 0.8 Ns/cm). The servo smoothly and rapidly
displaced the hand to one of eight equally distributed positions on a
circle of 8 mm radius centered on the hand position just before per-
turbation onset (Fig. 1 D). To avoid any visually induced reactions,
visual feedback was frozen during the perturbations. The displace-
ment consisted of a smooth 80 ms ramp-away, a 300 ms hold, and a
120 ms ramp-back period. The average restoring force and displace-
ment between 170 and 230 ms after perturbation onset were used to
estimate the two-by-two endpoint stiffness matrix K by linear
regression:

!$Fx

$Fy
" # !Kxx

Kyx

Kxy

Kyy
"!$px

$py
" , (1)

where $ indicates the mean change measured in the perturbed location
with respect to the mean measured in the final 100 ms before perturba-
tion. The endpoint stiffness can be represented as an ellipse (Mussa-
Ivaldi et al., 1985). Singular value decomposition of the stiffness matrix K
was used to determine the area, shape, and orientation of the stiffness
ellipses (Gomi and Osu, 1998).

Statistics. All data analyses were performed offline in Matlab (Math-
Works). Statistical analyses were performed using general linear models
in SPSS 16.0 (SPSS). Most statistical analyses were repeated-measures
ANOVAs with object curvature [C " (4.00, 2.00, 0.67 cm#1) cup] and
session (blocked and random) as factors. Statistical significance was con-
sidered at the 0.05 level, and, whenever appropriate, post hoc tests with
Bonferroni’s correction were performed.

Model
Theoretical aspects of stiffness geometry on force and position variability. To
understand the mechanisms by which force variability and stiffness in-
teract during haptic interactions, a simple musculo-skeletal model of our
task was built. For simplicity, the model only captures the open-loop
behavior of the system and does not model reflexive and visual contribu-
tions. Simulations of this model were used to investigate the qualitative
effects of endpoint stiffness geometry on force variability and position
variability. Both instances of variability are the result of the signal depen-
dency of the force fluctuations of the individual muscles (Harris and
Wolpert, 1998; Jones et al., 2002), mediated by the dynamics, including
the stiffness, of the musculoskeletal system (Selen et al., 2005). The arm
was modeled as a two-link system exerting a force of 7.5 N onto a rigid
circular object. The circular object had no surface friction. The arm
model was driven by six muscles: four mono-articular muscles, two
crossing the elbow and two crossing the shoulder, and two bi-articular
muscles.

The force attributed to each muscle was derived from the required
endpoint stiffness matrix and external force demand. The stiffness geom-
etry of the endpoint of the arm can be expressed as an endpoint stiffness
matrix (K ) in Cartesian space:

K # !Kxx

Kyx

Kxy

Kyy
". (2)

For our simulations, we set Kxy and Kyx equal, resulting in a purely
conservative stiffness (Mussa-Ivaldi et al., 1985) as was observed in the

experiments. From the endpoint stiffness, the joint stiffness (R) can be
determined (McIntyre et al., 1996):

R # JT KJ $
dJT

d%
F, (3)

where J represents the Jacobian matrix of the current limb configuration,
and % represents the joint angles. The second term describes the geomet-
ric stiffness, which is a tensor product between the derivative of the
Jacobian matrix J and the endpoint force F. This term corrects for the
change in endpoint force when the hand is moved slightly and the net
joint torques remain the same. The joint stiffness results from the stiff-
ness of the individual muscles:

R # DT MD (4)

where D is a 6 % 2 matrix of the moment arms of the muscles around the
shoulder and elbow joint. Moment arms were defined positive for flexor
muscles and negative for extensor muscles and based on published values
(Murray et al., 1995; Kuechle et al., 1997; Nijhof and Kouwenhoven,
2000) (for model parameters, see Table 1). M is a diagonal matrix repre-
senting the stiffness of each muscle, at which the muscle stiffness terms
(Mm,m) depend on the muscular force (Fm):

Mm,m # cm Fm (5)

The scaling constant cm was based on published joint torque stiffness
(Gomi and Osu, 1998; Franklin and Milner, 2003) and muscle force
stiffness (Edman and Josephson, 2007) regressions. We show results
for cm " 75 m #1 across all muscles, but results look similar for other
values within the physiological range. Combining these equations
gives the following:

K # &JT'#1#DT diag&cm Fm'D &
dJT

d%
F$J#1. (6)

To calculate the muscle forces from the endpoint stiffness, we use the
additional constraint that the joint torques (T ) create the desired end-
point force:

T # DT Fm. (7)

Both of these equations were simultaneously solved with the additional
constraint that the sum of the squared muscular forces was minimized.
This criterion was taken as a heuristic for energy expenditure. With a
six-muscle arm model, only a limited range of stiffness matrices can be
created.

The muscle forces resulting from the optimization were subsequently
contaminated with SDN and smoothed with a second-order filter with
time constants of 30 and 40 ms. The amount of SDN [coefficient of
variation (CV) " 0.15] was chosen so that the CV of the filtered force
traces was 3% (Hamilton et al., 2004; Moritz et al., 2005). Note that using
lower CV values that have been suggested for the more proximal joints
(Hamilton et al., 2004) do not affect the basic result of the simulation. In
a forward simulation, these noisy forces were exerted on a two-link sys-
tem with the corresponding joint stiffness matrix and external con-

Table 1. Parameter values for the limb model

Muscle moment arms Segment parameters

D1,1 0.0536 (m) I1 0.04 (Nms 2)
D2,1 #0.0536 (m) I2 0.06 (Nms 2)
D3,2 0.0316 (m) m1 1.93 (kg)
D4,2 #0.0267 (m) m2 1.52 (kg)
D5,1 0.0386 (m) l1 0.31 (m)
D6,1 #0.0388 (m) l2 0.34 (m)
D5,2 0.0427 (m) cm 75 (m #1)
D6,2 #0.0300 (m) B 0.05 K

Elements of the muscle moment arms matrix (Di,j), for the six muscles (i " 1– 6) around the shoulder ( j " 1) and
elbow joints ( j " 2). All other elements of D are zero. Moment of inertia (I) around the center of mass, the mass (m),
and length (l) of the upper arm (1) and forearm ( hand (2). cm is the proportionality constant between muscle force
and stiffness. The damping matrix (B) is proportional to the stiffness matrix (K).
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straints set by the object curvature. The joint damping matrix was set
equal to 5% of the stiffness matrix. This value is of similar magnitude to
both that used in computational models of the arm (Franklin et al., 2008)
and those measured experimentally (Dolan et al., 1993; Perreault et al.,
2004). Outcome measures were the force variability and the kinematic
variability of the endpoint of the system over a 10 s simulation. Both Kxx

and Kyy were varied from 100 to 600 N/m and the off-diagonal elements
Kxy and Kyx from #200 to 0 N/m. Simulations were performed for object
curvatures of 0.01, 0.1, 0.2, and 0.4 cm #1. For our model, we took a force
to stiffness ratio that is based on relatively large perturbations and there-
fore we probably underestimate the stiffness (Kearney and Hunter, 1982;
Shadmehr et al., 1993). Because of this, and the lack of active feedback
mechanisms, our model becomes unstable during interactions with ob-
jects of higher curvature.

Intrinsic and reflexive contributions to impedance. For simplicity, the
model only attempts to predict the open-loop behavior of the limb and
does not include feedback contributions. It is clear that reflex pathways
significantly contribute to muscle stiffness (Nichols and Houk, 1976;
Hoffer and Andreassen, 1981; Carter et al., 1990) and are modulated with
task (Nashner 1976; Akazawa et al., 1983; Lacquaniti et al., 1991; Bennett
et al., 1994) and environmental dynamics (Franklin et al., 2007; Damm
and McIntyre, 2008; Perreault et al., 2008; Pruszynski et al., 2008). De-
spite this evidence, we have chosen to model only the open-loop behavior
of the limb. This is because we are not yet able to accurately model the
reflex contributions to the impedance control during natural tasks. The
only current techniques that allow for simultaneous estimates of both
intrinsic and reflex stiffness either have not yet been applied to the two-
joint limb because of limitations of current robotic devices (Stein and
Kearney, 1995) or require stochastic perturbations that disturb per-
formance of a natural task (Kearney et al., 1997; Zhang and Rymer
1997; Perreault et al., 2000; van der Helm et al., 2002). This means that
any modeled reflex contributions to the control of impedance would
be physiologically unconstrained. Such modeling would not allow us
to accurately understand the interplay between noise and stiffness.
Our modeling therefore focused purely on the modulation of the
intrinsic stiffness to see whether this portion of the controlled imped-
ance could explain the rather surprising experimental results. By constrain-
ing our model in this manner, we gained understanding of the interplay
between muscle stiffness, environmental instability, and SDN.

Results
Forces
Buildup
Building up the required force while maintaining stability took
time. As object curvature increased, this force buildup time in-
creased fourfold (main study, F(3,15) " 33.371, p ) 0.001; second
study, F(3,18) " 19.543, p " 0.002) (Fig. 2A). Force buildup times

were not significantly different between the blocked or random
sessions, and neither was there a significant interaction between
object type and session. Several mechanisms may be responsible
for the slower buildup: force variability tends to decrease with
decreasing speed (Gordon and Ghez, 1987), and higher forces
take more time to build up and are needed to increase the stiffness
(Edman and Josephson, 2007).

Hold phase
After the buildup, subjects were required to keep the interaction
force, represented by the force vector, within a target window of
7.5 to 9.5 N for at least 1.5 s before a perturbation occurred and
the trial finished. Subjects exploited this force margin by lowering
the average length of the force vector as the object curvature
increased (main study, F(3,15) " 27.930; p ) 0.001; second study,
F(3,18) " 8.463, p " 0.001) (Fig. 2B), thereby possibly reducing
the SDN in the force signal. The average length of the force vector
did not differ between blocked and random sessions. However, a
significant interaction between object curvature and session type
was found (F(3,15) " 5.581, p " 0.009). Post hoc repeated mea-
sures on the sessions separately showed that the length of the
force vector decreased with increasing object curvature for both
sessions (blocked, F(3,15) " 19.067, p ) 0.001; random, F(3,15) "
14.331, p ) 0.001). Subsequently, we performed post hoc paired t
tests between the sessions for the individual objects. For the cup
condition, the length of the average force vector was significantly
smaller in the random than in the blocked session ( p " 0.048).
These results suggest that subjects reduce the force produced as
the task becomes harder. Bringing the magnitude of the force
vector closer to the lower boundary of the target force area in-
creases the risk of producing too little force, thereby resetting the
hold phase timer. However, this strategy is still less costly than
slipping off the object. In the former case, the force does not have
to be built up again from zero but only has to be increased by a
small amount to get into the target area again.

Stiffness
The endpoint stiffness was estimated using linear regression of
the force and position traces for the final 80 trials for each
object. The regression was performed on the time-averaged
force and position in the estimation window (170 –230 ms) of all
individual perturbation trials. The variance explained (r 2) by this
linear regression ranged from 0.89 to 0.98 over all the subjects,
force directions, objects, and sessions.

Main study
Figure 3A presents the stiffness ellipses for the force in negative
x-direction for all subjects, object curvatures, and experimental
sessions.

The size of the stiffness ellipse (Fig. 3B), a measure of the
global increase in stiffness, systematically increased with in-
creasing object curvature (F(3,15) " 69.613, p ) 0.001). The
stiffness ellipses systematically rotated toward the direction of
instability (Fig. 3C) with increasing object curvature (F(3,15) "
23.869, p ) 0.001). However, this rotation was small (maxi-
mum rotation, 23°), and the orientation of the ellipse never
fully reached the 90° direction of the instability (closest value,
110°).

The stiffness ellipse, its size, and orientation are convenient
measures to represent the characteristics of the stiffness matrix.
However, the full information about the endpoint stiffness is
contained in the elements of the stiffness matrix (Fig. 4A). The
diagonal elements Kxx and Kyy increased with increasing object

Figure 2. Task performance. A, The mean * SEM time across subjects to stabilize the re-
quired force. B, The mean * SEM force exerted in the target region. Circles (black) and squares
(gray) indicate the blocked and random sessions, respectively, for pushing in the main study:
negative x-direction (Fx). Black diamonds refer to pushing in the second study: positive
y-direction (Fy) in a blocked design. Measures calculated over the final 40 trials of each condi-
tion. *p ) 0.05, significant difference between the blocked and random sessions.
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curvature (F(3,15) " 12.234, p ) 0.001; F(3,15) " 61.511, p )
0.001). Across all objects, no significant main effect was observed
between the blocked and random session for any element of the
stiffness matrix. However, an interaction between object and ses-
sion was found for Kyy (F(3,15) " 4.897, p " 0.014). To study this
further, pairwise comparisons of Kyy between the blocked and
random sessions for the individual objects were performed,
showing that, for the lowest curvature and the cup condition, Kyy

was higher in the random compared with the blocked session
( p " 0.013 and p " 0.050). The ratio of Kyy/Kxx was calculated to
further examine the modulation of the total stiffness. This ratio
increased with object curvature (F(3,15) " 36.603, p ) 0.001),
indicating that Kyy increases faster than Kxx.

Second study
Stiffness ellipses for the individual subjects and the elements of
the endpoint stiffness matrix are presented in Figure 5 for forces
in the positive y-direction. For this direction, the modulation of
the stiffness ellipse with object curvature is much more variable
between subjects (Fig. 5A). However, across all subjects, only the
modulation in Kxx reaches significance with object curvature
(F(3,18) " 9.439, p " 0.014) (Fig. 5B). Also for this force direction,
the ellipses are, in general, not oriented along the instability di-
rection, and the off-diagonal elements of the stiffness matrix did
not vary with curvature, remaining at approximately #120 N/m
(Fig. 5B).

Rancourt and Hogan (2001) have performed theoretical anal-
yses on the stability requirements for a push-on-a-stick para-
digm, which is mathematically equivalent to our experiments: the
hand representation, together with the curved object, can be de-
scribed as a pivoting stick around the center of the curved object.
In the case of our main experimental task, theoretical values of
Kyy should be +1500, 1000, 428, and 0 N/m, respectively. Several
factors may have contributed to the lower stiffness estimates in
our experiment. First, our stiffness estimates were based on rela-
tively large perturbations (8 mm) compared with the infinitely

small perturbations for the theoretical derivations. Previous
studies have demonstrated that muscle (Rack and Westbury,
1974; Kearney and Hunter, 1982; MacKay et al., 1986) and limb
(Shadmehr et al., 1993) stiffness decreases nonlinearly with the
amplitude of the perturbations used for stiffness estimation, re-
sulting in stiffness underestimates for larger perturbations. An-
other possible explanation for measured stiffness values lower
than the theoretical values could be that the hand is not locally
stable (Hasan, 2005) but relies on corrective responses for com-
pensation. The feedback mechanisms necessary for these correc-
tive responses are not taken into account in neither the
mathematical derivations by Rancourt and Hogan (2001) nor
our simulations. Finally, the robotic manipulandum has some
static and dynamic friction that adds to the overall stability of the
system and reducing the required stiffness of the arm. Neverthe-
less, with these lower stiffness values, our subjects were able to
stabilize their hand while pushing.

History dependence of the stiffness matrix
Previous studies have shown that motor actions in the current
trial systematically depend on the history of previous trials for
grip force modulation (Witney et al., 2001), force compensation
(Scheidt et al., 2001), and EMG modulation (Osu et al., 2002;
Franklin et al., 2008) during motor adaptation to novel force
fields. Our observation, in the main experiment, that the end-
point stiffness was higher in the random compared with the
blocked session for the more stable objects similarly suggests that
the endpoint stiffness in the previous trial(s) is not entirely
washed out during the force buildup of the present trial. To fur-
ther investigate this, we calculated the stiffness ellipse for all possible
trial transitions to all objects and compared that with the average
stiffness for that object. For example, to examine the influence of the
previous trial on the stiffness estimate for the object of curvature 2,
we calculated the stiffness for the following transitions: curvature

Figure 3. Endpoint stiffness is adapted to the curvature of the objects for forces in the main study: negative x-direction. A, Endpoint stiffness represented as an ellipse for all subjects (S1–S6),
object curvatures (color codes shown), and experimental sessions. B, Mean * SEM size of the stiffness ellipses for the different objects for the blocked (red circles) and random (blue squares)
sessions. C, Mean * SEM orientation of the stiffness ellipses.
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4.003 curvature 2.00, curvature 2.003 curvature 2.00, curvature
0.673 curvature 2.00, cup3 curvature 2.00.

Repeated-measures ANOVA with four possible transitions to-
ward four possible objects revealed significant effects of both
transition (F(3,21) " 5.343, p " 0.007) and object (F(3,21) "
27.235, p " 0.001) on Kyy. Because there were no interactions, we
collapsed the transition data for all object curvatures (Fig. 6A).
Interacting with the object of curvature 4 on the previous trial will
on average result in stiffness for the present trial that is 20 N/m
higher than the average stiffness for the object of the present trial.
Similarly, having interacted with the cup object in the previous
trial will lower the stiffness in the present trial by !15 N/m.
Figure 6B shows the difference in the Kyy for each object relative
to the mean Kyy across objects. To show the relative amount of
influence of the previous object compared with the current ob-
ject, the gray band in Figure 6B shows the full range of Kyy values
in Figure 6A. Approximately 10% of the stiffness change can be
explained by the curvature of the object on the previous trial.

Theoretical aspects of stiffness modulation for stabilization in
a force production task
Our main experiment, in which forces were produced in negative
x-direction, showed two surprising results. First, subjects modulated
their stiffness not only in the direction of the instability (the
y-direction) but also in the orthogonal direction. Second, the
orientation of the stiffness ellipse was never in the direction of the
instability and Kxy remained approximately constant. These find-
ings are at odds with studies on reaching movements in unstable
environments, in which the major axis of the stiffness ellipse is ori-
ented in the direction of instability (Burdet et al., 2001; Franklin et

al., 2003b, 2007) and only modulates in
that direction (Franklin et al., 2004). We
hypothesized that our findings could arise
because to maintain stability the motor
system has to trade off the stabilizing
properties of stiffness and the destabiliz-
ing properties of noise and that this
tradeoff will depend in a complex way on
the task geometry.

To investigate this, we simulated the ef-
fects of different stiffness geometries on
force and position variability in a simple pla-
nar arm model. All attainable stiffness ge-
ometries for a stiffness-to-force constant of
75 m#1 were derived (see Materials and
Methods). The muscle forces required to
generate the stiffness geometry were con-
taminated with SDN with a CV of 3%.

Figure 7 shows how different stiffness
geometries and object curvatures affect
the kinematic variability (expressed as
SD) of the endpoint of the arm. Kxy is var-
ied along the columns and object curva-
ture along the rows. Note that the object
curvatures are smaller than those in the
experiments. Presumably because of the
lack of visual and reflexive feedback, our
model could not maintain stability for ob-
jects of curvatures above 0.4 cm#1. The
top row of Figure 7 shows the kinematic
variability when the endpoint of the arm
pushes onto a frictionless wall. The valley
of minimal variability, shown in white, is a

function of both Kxx and Kyy, and it is along this valley that stiff-
ness will be modulated. To reduce kinematic variability, subjects
will have to change their stiffness geometry along this manifold
and increase Kxx and Kyy simultaneously. Furthermore, it is clear
that more negative Kxy values result in less kinematic variability
and a broader region, i.e., a shallower valley, of low kinematic
variability. As object curvature increases, along the rows of Figure
7, the kinematic variability for the same stiffness geometry in-
creases (note the different color bar scales). The region spanned
by Kxx and Kyy combinations reduces because, for certain combi-
nations, the hand slips off the object.

These simulations, therefore, suggest that both Kxx and Kyy

have to be increased for stability. In addition, they provide indi-
cations why we found experimentally that subjects have a con-
stant, non-zero, off-diagonal term (Kxy) in the stiffness matrix at
all times: for a given combination of Kxx and Kyy, more negative
values of Kxy are associated with lower global energy demands,
expressed as the sum of all muscular forces (Fig. 8). However, low-
ering Kxy even further may be suboptimal because this requires ex-
tensive activation of the mono-articular shoulder muscles, thereby
increasing the local physiological cost (Fig. 9, dashed lines).

In contrast to the main experiment, for the second experiment
(positive y-direction), significant modulation of only Kxx was
observed. We also simulated the effects of different stiffness ge-
ometries on position variability for this task. In correspondence
with the experimental result, position variability was hardly in-
fluenced by changes in Kyy resulting in the absence of a clear valley
of minimum position variability (Fig. 10B). Furthermore, the
model predicts that position variability decreases with increasing
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Kxy before reaching a minimum at #120 N/m. This value nicely
corresponds with the experimental observations.

Figure 10 summarizes and relates the experimental and sim-
ulation results for both studies. Our simple arm model predicts a
strong dependence between Kxx and Kyy for the negative x-force
direction of the main study (Fig. 10A), resulting in a valley along
which to modulate stiffness. Because the orientation of this valley
hardly depends on object curvature (Fig. 7), we show results for a
simulated wall. In addition, we fixed Kxy to #150 N/m, which
corresponds with our experimental findings. As stated previ-
ously, Kyy hardly influences the kinematic variability in the sim-
ulations for the second study: positive y-direction (Fig. 10B). To
summarize the experimental findings, we calculated the linear
regression for all observed pairs of Kxx and Kyy (Fig. 10C). The
regression slope is not different from zero for the second study

(positive y-force direction), whereas the slope for the main study
(negative x-direction) is significant (slope " 1.66, p " 0.007) and
similar to that of the valley derived from our simulations (slope "
1.52). We also show the mean and SEM for the individual object
curvatures and the two force directions.

In conclusion, we found an increase in both Kxx and Kyy for the
main study (negative x-force direction) and only an increase of
Kyy in the second study (positive y-force direction). Furthermore,
for both studies, the stiffness matrix was never oriented along the
instability axis. These results are explained by the model as a
tradeoff between adding stiffness to maintain stability and mini-
mizing the detrimental effects of SDN for which added stiffness
does not compensate.

Discussion
In this study, we investigated the ability of the neuromuscular
system to control the endpoint stiffness of the arm in an unstable
force production task. As the curvature of the objects increased
(higher instability), subjects changed their endpoint stiffness, in
both the overall size and orientation. In particular, subjects
adapted their arm endpoint stiffness geometry predominantly in
the direction of the instability but also in the orthogonal direc-
tion. Simulations showed that these features represent a tradeoff
between stability engendered by the increase in stiffness and the
destabilizing effects of neuromotor noise. Random presentation
of object curvatures resulted in a clear influence of the object
curvature in the preceding trial on the endpoint stiffness in the
current trial.

Influence of SDN on stiffness geometry
Our findings complement previous studies in which energy was
added to the system to create an unstable environment. Increased
instability during movement, caused by an external divergent
force field, resulted in an alignment of the stiffness geometry with
the direction of instability (Burdet et al., 2001; Franklin et al.,

Figure 5. Endpoint stiffness is adapted to the curvature of the objects for forces in the second study (positive y-direction). A, Endpoint stiffness represented as an ellipse for all subjects (S1–S7)
and object curvatures (color codes shown). B, The mean * SEM elements of the endpoint stiffness matrix. Only Kxx shows a significant increase with object curvature. C, Changes in the ratio of Kyy

and Kxx of the stiffness matrix.
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2003b, 2007) and scaled with the magnitude of the instability
(Franklin et al., 2004). During posture maintenance, the addition
of energy, in the form of directional force pulses, resulted in
changes of the stiffness geometry that were specific to the insta-
bility of the environment (Darainy et al., 2004). In contrast, our
study examined natural interactions in which instability arises
from purely passive elements in the world and noise in the motor
commands.

We found only limited changes in the orientation of the end-
point stiffness as the object curvatures increased, with a maxi-
mum change of 23° and the closest ellipse orientation to the 90°
instability direction being 110°. Similar small changes in the el-
lipse orientation have been reported previously for postural tasks
(Perreault et al., 2002; Darainy et al., 2004). However, the orien-
tation of the stiffness ellipse itself is less important than the
change in the endpoint stiffness relative to the normal endpoint

Figure 7. The simulated variability of endpoint position in relation to the endpoint stiffness and task geometry for the main study. Endpoint variability is caused by SDN on the muscular forces.
Each panel depicts the kinematic variability (SD) as a function of Kxx and Kyy. The columns represent different off-diagonal terms of the stiffness matrix (Kxy), with the leftmost column showing all
stiffness geometries having one of their axes along the instability direction. Task geometry is expressed as object curvature, which increases down the rows [C " (0, 0.1, 0.2, 0.4) cm #1]. The
kinematic variability results for each object curvature are plotted using different scales as indicated beneath each row. Note that, with increasing curvature, the kinematic variability increases, which
for some stiffness geometries results in slip offs. This is reflected by the increase of the white area. White lines indicate the valley of kinematic variability minima (i.e., the Kxx that minimizes the
kinematic variability for a given Kyy).
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stiffness. This was examined with the changes in the Kxx and Kyy

terms of the stiffness matrix. Whereas the ratio of Kyy/Kxx in-
creased with object curvature, indicating that the greatest change
in the endpoint stiffness was in the direction of the instability,
both Kyy and Kxx increased as this instability increased. Therefore,
the endpoint stiffness of the arm increased in both the direction
of the instability and the orthogonal force direction.

Based on numerical simulations, it has been argued that the
properties of the neuromuscular system limits rotation of the
stiffness ellipse to this small range (Darainy et al., 2004). In con-
trast, our numerical simulations indicated that, in principle, the neu-
romuscular system could orient the major axis of the stiffness ellipse
in the direction of the instability (Fig. 5, left column) (Kxy " 0). This
ability arises in our model because, unlike the previous model, we
allowed the independent control of coactivation of mono-
articular and bi-articular muscles. Although previous studies of
stable force control tasks have shown mainly changes in the single
joint muscles (Perreault et al., 2001) or a combined control over
both the single and bi-articular muscles (Gomi and Osu, 1998),
studies of unstable environments have favored a unique role for

the bi-articular muscles (McIntyre et al., 1996) and independent
control over these muscles for stability purposes (Franklin and
Milner, 2003; Franklin et al., 2003a, 2007). Additional support for
this has been seen in the relative changes in bi-articular muscle
involvement between force and movement control (Tax et al.,
1990; van Groeningen and Erkelens, 1994; van Bolhuis and
Gielen, 1997). These studies suggest that there is at least a degree
of independent control over the mono-articular and bi-articular
muscles that could lead to a greater degree of control over the
endpoint stiffness than was predicted previously.

However, the most important finding of the simulation was
that the lowest kinematic variability was not obtained when the
stiffness ellipse was oriented in the direction of the instability.
Instead, it was obtained when the model adapted to the instability
in a similar pattern to that observed in our subjects, with both an
increase in the Kxx and Kyy terms of the stiffness matrix and only

Figure 8. Sum of internal muscular forces as a function of stiffness geometry, simulated for the main study. Each panel depicts the sum of the internal muscular forces in newtons for different
off-diagonal terms in the stiffness matrix (Kxy). This sum of internal muscular forces in newtons was an approximation of total energy expenditure.
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Figure 10. A comparison of the predicted and observed manifold along which the endpoint
stiffness (Kxx and Kyy) should modulate as task difficulty increases. A, Simulated kinematic
variability (SDy) for the main study (negative x-force production direction). A clear dependence
of Kxx and Kyy is visible (see also Fig. 7). For the simulations, Kxy " #150 and curvature was 0.
B, Simulated kinematic variability for the second study (positive y-force direction). Now the
kinematic variability (SDx) depends almost entirely on Kxx. C, The manifold along which the
experimental results align. Regression lines of Kxx and Kyy through the experimental results for
the main study (negative x; red) and second study (positive y; blue). Also the mean * SEM
values for each object curvature (see color map of Fig. 1) and force direction are shown.
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a partial rotation of the stiffness ellipse toward the direction of the
instability. We argue that the neuromuscular system may be able
to rotate the stiffness ellipse over a wider range than has been
shown previously in static studies but that an additional rotation
toward the instability direction is suboptimal when one considers
the effects of SDN. For both force production directions, our
simulations show that SDN has a bigger effect on kinematic vari-
ability when the main axis of the stiffness ellipse is along the
instability direction. Having non-zero off-diagonal terms in the stiff-
ness ellipse reduces this influence, thereby guaranteeing stability.
These non-intuitive effects suggest that there are fundamental
differences between the control of endpoint stiffness for move-
ment variability reduction and for stabilization against external
force fields.

Based on an unstable task requiring the compressing of a
spring able to buckle, it has been argued that stiffness modulation
is inconceivable to guarantee stability because it would introduce
instability attributable to SDN (Venkadesan et al., 2007). The
present study contradicts this claim and underpins previous sim-
ulation work (Selen et al., 2005), by showing that the increase in
SDN at the muscular force level can be counteracted by increase
in joint and endpoint stiffness. Nevertheless, it is conceivable that
not all unstable interactions with the environment can be stabi-
lized by stiffness modulation. In addition to changing the stiff-
ness geometry, our subjects also exploited the size of the target
force region to maintain stability. Lowering the forces has a posi-
tive effect on stability in two ways. First, the required stiffness de-
creases linearly with the average force (Rancourt and Hogan, 2001),
and second, the perturbing forces attributable to SDN also de-
crease with lower forces (Jones et al., 2002; Hamilton et al., 2004).

The time course of stiffness modulation
When faced with a new dynamical environment, the CNS has to
update its internal representation of (the stability of) that envi-
ronment and adapt its control policy accordingly (Franklin et al.,
2008). Because excessive coactivation is energy consuming (Franklin
et al., 2004), it is expected that the CNS can quickly adapt the
stiffness geometry to the instability of the environment. How-
ever, so far the buildup of this stability representation and the
adaptation of the control policy have only been investigated over
the time course of repeated trials with the same instability (Franklin
et al., 2003b, 2004). The results of the present study suggest that
the modification of the endpoint stiffness not only takes place
between trials but may also take place as an online process within
a trial. The longer force buildup times for the more curved objects
suggest that modification of the endpoint stiffness may be an
online process that is, at least partially, feedback driven.

Apart from this stiffness adaptation during the trial, we also
found indications for a stiffness memory across trials. First, for
the object of highest curvature, all stiffness measures were similar
for the blocked and random sessions. However, the slope with
which the total stiffness and Kyy decreased with decreasing object
curvature was lower for the random session, ultimately resulting
in higher total stiffness and Kyy for the cup and object of lowest
curvature. This presumably is a reflection of the stiffness adapta-
tion process that progresses over trials. Second, in the random
session, there was a systematic effect of the previous trial on the
observed stiffness in the present trial. Such effects have been re-
ported previously in terms of EMG (Franklin et al., 2008) or the
force (Scheidt et al., 2001) while learning a new force field but not
on the endpoint stiffness itself.

Stiffness control for self-generated instability and noise
The present study experimentally confirms that stiffness geome-
try is adapted to the instability experienced in an isometric force
production task. Increasing the stiffness of the limb requires
larger muscle activation, which further results in larger force vari-
ability attributable to SDN (Jones et al., 2002; Hamilton et al.,
2004). This force variability results in movement variability (Har-
ris and Wolpert, 1998) that can be controlled by changing the
stiffness geometry (Lametti et al., 2007) and magnitude (Selen et
al., 2006a,b). Although some researchers have shown that force
variability increases with co-contraction (Christou et al., 2007), our
results show that this does not necessarily increase kinematic vari-
ability. In conclusion, although stiffness control is not a suitable
solution for reducing force variability, it can reduce kinematic vari-
ability during interactions with objects.

References
Akazawa K, Milner TE, Stein RB (1983) Modulation of reflex EMG and

stiffness in response to stretch of human finger muscle. J Neurophysiol
49:16 –27.

Bennett DJ, Gorassini M, Prochazka A (1994) Catching a ball: contributions
of intrinsic muscle stiffness, reflexes, and higher order responses. Can
J Physiol Pharmacol 72:525–534.

Burdet E, Osu R, Franklin DW, Milner TE, Kawato M (2001) The central
nervous system stabilizes unstable dynamics by learning optimal imped-
ance. Nature 414:446 – 449.

Carter RR, Crago PE, Keith MW (1990) Stiffness regulation by reflex action
in the normal human hand. J Neurophysiol 64:105–118.

Christou EA, Poston B, Enoka JA, Enoka RM (2007) Different neural ad-
justments improve endpoint accuracy with practice in young and old
adults. J Neurophysiol 97:3340 –3350.

Damm L, McIntyre J (2008) Physiological basis of limb-impedance modu-
lation during free and constrained movements. J Neurophysiol
100:2577–2588.

Darainy M, Malfait N, Gribble PL, Towhidkhah F, Ostry DJ (2004) Learning
to control arm stiffness under static conditions. J Neurophysiol
92:3344 –3350.

Dolan JM, Friedman MB, Nagurka ML (1993) Dynamic and loaded imped-
ance components in the maintenance of human posture. IEEE Trans Syst
Man Cybern 23:698 –709.

Edman KA, Josephson RK (2007) Determinants of force rise time during
isometric contraction of frog muscle fibres. J Physiol 580:1007–1019.

Franklin DW, Milner TE (2003) Adaptive control of stiffness to stabilize
hand position with large loads. Exp Brain Res 152:211–220.

Franklin DW, Osu R, Burdet E, Kawato M, Milner TE (2003a) Adaptation
to stable and unstable dynamics achieved by combined impedance con-
trol and inverse dynamics model. J Neurophysiol 90:3270 –3282.

Franklin DW, Burdet E, Osu R, Kawato M, Milner TE (2003b) Functional
significance of stiffness in adaptation of multijoint arm movements to
stable and unstable dynamics. Exp Brain Res 151:145–157.

Franklin DW, So U, Kawato M, Milner TE (2004) Impedance control bal-
ances stability with metabolically costly muscle activation. J Neurophysiol
92:3097–3105.

Franklin DW, Liaw G, Milner TE, Osu R, Burdet E, Kawato M (2007) End-
point stiffness of the arm is directionally tuned to instability in the envi-
ronment. J Neurosci 27:7705–7716.

Franklin DW, Burdet E, Tee KP, Osu R, Chew CM, Milner TE, Kawato M
(2008) CNS learns stable, accurate, and efficient movements using a sim-
ple algorithm. J Neurosci 28:11165–11173.

Gomi H, Osu R (1998) Task-dependent viscoelasticity of human multijoint
arm and its spatial characteristics for interaction with environments.
J Neurosci 18:8965– 8978.

Gordon J, Ghez C (1987) Trajectory control in targeted force impulses. II.
Pulse height control. Exp Brain Res 67:241–252.

Hamilton AF, Jones KE, Wolpert DM (2004) The scaling of motor noise
with muscle strength and motor unit number in humans. Exp Brain Res
157:417– 430.

Harris CM, Wolpert DM (1998) Signal-dependent noise determines motor
planning. Nature 394:780 –784.

Hasan Z (2005) The human motor control system’s response to mechanical

Selen et al. • Impedance Control and Motor Noise J. Neurosci., October 7, 2009 • 29(40):12606 –12616 • 12615



perturbation: should it, can it, and does it ensure stability? J Mot Behav
37:484 – 493.

Hoffer JA, Andreassen S (1981) Regulation of soleus muscle stiffness in pre-
mammillary cats: intrinsic and reflex components. J Neurophysiol
45:267–285.

Hogan N (1984) Adaptive control of mechanical impedance by coactivation
of antagonist muscles. IEEE Trans Auto Control 29:681– 690.

Howard IS, Ingram JN, Wolpert DM (2009) A modular planar robotic ma-
nipulandum with end-point torque control. J Neurosci Methods 181:199–
211.

Jones KE, Hamilton AF, Wolpert DM (2002) Sources of signal-dependent
noise during isometric force production. J Neurophysiol 88:1533–1544.

Kearney RE, Hunter IW (1982) Dynamics of human ankle stiffness: varia-
tion with displacement amplitude. J Biomech 15:753–756.

Kearney RE, Stein RB, Parameswaran L (1997) Identification of intrinsic
and reflex contributions to human ankle stiffness dynamics. IEEE Trans
Biomed Eng 44:493–504.

Kuechle DK, Newman SR, Itoi E, Morrey BF, An KN (1997) Shoulder mus-
cle moment arms during horizontal flexion and elevation. J Shoulder
Elbow Surg 6:429 – 439.

Lacquaniti F, Borghese NA, Carrozzo M (1991) Transient reversal of the
stretch reflex in human arm muscles. J Neurophysiol 66:939 –954.

Lametti DR, Houle G, Ostry DJ (2007) Control of movement variability and
the regulation of limb impedance. J Neurophysiol 98:3516 –3524.

MacKay WA, Crammond DJ, Kwan HC, Murphy JT (1986) Measurements
of human forearm viscoelasticity. J Biomech 19:231–238.

McIntyre J, Mussa-Ivaldi FA, Bizzi E (1996) The control of stable postures in
the multijoint arm. Exp Brain Res 110:248 –264.

Milner TE (2002a) Contribution of geometry and joint stiffness to mechan-
ical stability of the human arm. Exp Brain Res 143:515–519.

Milner TE (2002b) Adaptation to destabilizing dynamics by means of mus-
cle cocontraction. Exp Brain Res 143:406 – 416.

Milner TE, Cloutier C (1993) Compensation for mechanically unstable
loading in voluntary wrist movement. Exp Brain Res 94:522–532.

Moritz CT, Barry BK, Pascoe MA, Enoka RM (2005) Discharge rate vari-
ability Influences the variation in force fluctuations across the working
range. J Neurophysiol 93:2449 –2459.

Murray WM, Delp SL, Buchanan TS (1995) Variation of muscle moment
arms with elbow and forearm position. J Biomech 28:513–525.

Mussa-Ivaldi FA, Hogan N, Bizzi E (1985) Neural, mechanical, and geomet-
ric factors subserving arm posture in humans. J Neurosci 5:2732–2743.

Nashner LM (1976) Adapting reflexes controlling the human posture. Exp
Brain Res 26:59 –72.

Nichols TR, Houk JC (1976) Improvement in linearity and regulation of
stiffness that results from actions of stretch reflex. J Neurophysiol
39:119 –142.

Nijhof EJ, Kouwenhoven E (2000) Simulation of multi-joint arm move-
ments. In: Biomechanics and neural control of posture and movement
(Winters JM, Crago PE, eds), pp 363–372. New York: Springer-Verlag.

Osu R, Franklin DW, Kato H, Gomi H, Domen K, Yoshioka T, Kawato M
(2002) Short- and long-term changes in joint co-contraction associated
with motor learning as revealed from surface EMG. J Neurophysiol
88:991–1004.

Perreault EJ, Crago PE, Kirsch RF (2000) Estimation of intrinsic and reflex

contributions to muscle dynamics: a modeling study. IEEE Trans Biomed
Eng 47:1413–1421.

Perreault EJ, Kirsch RF, Crago PE (2001) Effects of voluntary force genera-
tion on the elastic components of endpoint stiffness. Exp Brain Res
141:312–323.

Perreault EJ, Kirsch RF, Crago PE (2002) Voluntary control of static end-
point stiffness during force regulation tasks. J Neurophysiol 87:2808-
2816.

Perreault EJ, Kirsch RF, Crago PE (2004) Multijoint dynamics and postural
stability of the human arm. Exp Brain Res 157:507–517.

Perreault EJ, Chen K, Trumbower RD, Lewis G (2008) Interactions with
compliant loads alter stretch reflex gains but not intermuscular coordina-
tion. J Neurophysiol 99:2101–2113.

Pruszynski JA, Kurtzer I, Scott SH (2008) Rapid motor responses are appro-
priately tuned to the metrics of a visuospatial task. J Neurophysiol
100:224 –238.

Rack PM, Westbury DR (1974) The short range stiffness of active mamma-
lian muscle and its effect on mechanical properties. J Physiol 240:331–
350.

Rancourt D, Hogan N (2001) Stability in force-production tasks. J Mot Be-
hav 33:193–204.

Scheidt RA, Dingwell JB, Mussa-Ivaldi FA (2001) Learning to move amid
uncertainty. J Neurophysiol 86:971–985.

Selen LP, Beek PJ, van Dieën JH (2005) Can co-activation reduce kinematic
variability? A simulation study. Biol Cybern 93:373–381.
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