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Comment on “Single-trial spike trains
in parietal cortex reveal discrete steps
during decision-making”
Michael N. Shadlen,1* Roozbeh Kiani,2 William T. Newsome,3 Joshua I. Gold,4

Daniel M. Wolpert,5 Ariel Zylberberg,6 Jochen Ditterich,7 Victor de Lafuente,8

Tianming Yang,9 Jamie Roitman10

Latimer et al. (Reports, 10 July 2015, p. 184) claim that during perceptual decision
formation, parietal neurons undergo one-time, discrete steps in firing rate instead of
gradual changes that represent the accumulation of evidence. However, that conclusion
rests on unsubstantiated assumptions about the time window of evidence accumulation,
and their stepping model cannot explain existing data as effectively as evidence-
accumulation models.

L
atimer et al. (1) analyzed the spiking activity
of neurons in the lateral intraparietal (LIP)
area of parietal cortex and challenged the
hypothesis that these neurons represent
the accumulation of noisy evidence bearing

on a perceptual choice (e.g., drift diffusion). They
conclude that these neurons represent jumps (or
steps) from a neutral to a high or low state that
represents the upcoming choice. Accordingly,
the ramplike activity of LIP neurons is an artifact
caused by averaging step functions occurring at
different times. Conceptually, their step model
implies that LIP activity represents either (i) the
outcome of the decision, corresponding to steps
synchronized to the end of the process, or (ii) the
decision process itself, corresponding to the pop-
ulation average of all-or-none steps contributed
by individual neurons at different times. Neither
interpretation is consistent with existing data.
The first interpretation is refuted by choice–

reaction time (RT) experiments (2). Aligned to
the beginning of deliberation, the across-trial
averages of such steps would resemble a ramp.
However, aligned to the end of the decision, syn-
chronous steps should be obvious [e.g., figures
2A and 3A in (1)]. The LIP data are inconsistent

with this idea (Fig. 1A): trials with long RT do not
hover in a neutral state until the end of the de-
cision [see also (3)].
The second interpretation could explain the

ramps aligned to saccadic responses in the RT
experiments. However, this interpretation is in-
consistent with other experiments in which a
sequence of shapes replaces random-dot motion
to furnish discrete packets of evidence. Under these
conditions, LIPneuronsdonot step to stereotyped
high or low states. Instead, they produce graded
responses throughout the decision according to
the sign and strength of the evidence provided by
the current shape (Fig. 1B). Further, the graded
population responses are not simply amixture of
high and low steps (4, 5). If they were, the change

in firing rate induced by a shape should diminish
for later shapes, because the neuron is more like-
ly to have already stepped. This is clearly incor-
rect [see figures 3B and 4B in (4)]. Thus, LIP
neurons encode multiple small, noisy changes
in evidence (not one-time, all-or-nothing steps)
in amanner consistent with diffusion or random-
walk dynamics.
These points question the conclusions in (1).

Then why do their analyses suggest stepping?
Parietal activity can step in the context of quickly
planned eyemovements to visual targets (6, 7). In
contrast, diffusion (ramping) dynamics arisewhen
the decision to make such an eye movement re-
sults from the temporal integration of evidence
over amore prolonged interval. Therefore, before
using models to identify (or refute) neural corre-
lates of an integration-based decision process, it
is essential to (i) know that the neural activity in
question is occurring in a behavioral context that
is actually based on prolonged integration and
(ii) focus any model comparison on the epoch in
which this integration occurs.
Unfortunately, it is difficult to estimate the

integration times from the behavioral data in (1).
They did not use an RT experiment, and their
monkey’s accuracy is flat over the viewing du-
rations they tested (Fig. 2, filled stars). It is possible
to deduce integration times from a follow-up ex-
periment in the same monkey, using a broader
range of durations (Fig. 2, open symbols). Fitting
these datawith bounded diffusion (curves) yields
a median integration time of ~250 ms (across all
motion strengths). However, themonkey’s accuracy
is substantially worse in the earlier data, analyzed
in (1). One possibility is that the poorer accuracy
is explained by a combination of guessing and
overall lower sensitivity—partially compensated
by an elevated decision bound—whose net effect
is longer integration times (~310 ms). Alterna-
tively, the poor accuracy is explained by brief
integration times (~70ms) or possibly a different
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Fig. 1. Experimental evidence in support of a gradual
accumulation of evidence in LIP. (A) LIP neurons ramp,

on average, during an RT task. Averages are sorted by RTquantile (color), using trials in which themonkey
chose the direction associated with the choice target in the neuron’s response field. [Modified from (2),
showing responses from ~200ms after stimulus onset; see also figure 2, B and D, in (11)]. (B) LIP neurons
undergo multiple incremental changes in firing rate on single trials. On this example trial, the monkey
decided in favor of the green target in the neuron’s response field, consistent with the accumulated
evidence from the sequence of shapes [from movie 3 of (4)]. [For more single-trial examples, see the
movies in (4) and movies 1 and 2 in (5). For population analyses, see (4, 5).]
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strategy altogether, in which the monkey waits
for salient features (extrema) in the random
dots. These latter alternatives are consistent with
our experience training monkeys on these kinds
of tasks.
Most important, regardless of whether the in-

tegration times are 70 ms or 300 ms, they are
substantially shorter than the 500- to 1000-ms
duration of the trials. Accordingly, integration does
not need to start at a consistent time within a
trial. This potential variability exposes a critical
bias in themodel comparison: The steppingmod-
el is allowed the flexibility to account for random
times of transitions, but the diffusion model is
tethered to a fixed start time and therefore is
unfairly penalized in comparison. A relatively
short integration window occurring at random
times during motion viewing can also explain
other features of (1): the broad distribution of the
time of the putative steps, the absence of a de-
pendency of step times onmotion strength, the
pattern of response variance [figure 4A in (1)],
the superior choice predictions of the step mod-

el, and its superior deviance information cri-
terion (DIC).
Latimer et al. attempt to mitigate some of

these concerns in their supplementary analysis
of data from anRT experiment (2). However, that
analysis also does not convincingly support a
steppingmodel. Of the 16 neurons (of 54) chosen
for analysis, only 10 exhibited the kind of coherence-
and choice-dependent ramping that is the focus
of the model comparison. Of these, four support
diffusion. Moreover, the average DDIC in favor of
steps is small (~19; 10 excluding the outlier), even
though the comparison is biased toward that re-
sult: (i) thedata includemanyhigh-motion strength
trials with brief integration times (e.g., 12% of
included trials have integration times <150 ms)
that are likely to be seen as steps; (ii) their integ-
ration model assumes that the starting time of
integration is fixed, despite the fact that it varies
considerably across neurons [see figure S22 in (1)];
and (iii) their own simulations [figure S6 in (1)]
show that their analysis can produce evidence
for stepping even under simulations of diffusion.

Identifying the sources of these biases, including
possibly theirmodel’s handling of negative-going
rates (which are neither bounded nor stopped
like the positive-going rates) [supplementaryma-
terials section 2.1, figure 1B, and figure S9 in (1)]
and the inability to identify latent firing rates
from the parameters of diffusion, should be ad-
dressed before applying these methods to richer
data sets.
In summary, Latimer et al. present a statistical

method for inferring discrete steps in firing rate
from single neurons [similar to (8–10)] and use it
to claim that averages of random steps are re-
sponsible for the evolving firing of LIP neurons
during deliberative decision-making. However,
they have not supported this claim, and they have
not provided a plausible explanation for many
experimental observations supporting the repre-
sentation of accumulated noisy evidence by single
neurons in LIP. At present, bounded diffusion
provides the best account of the ensemble of neu-
ral data.
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Fig. 2. Behavioral integration times are difficult to determine from the analyzed data set but are
certainly shorter than the full 500- to 1000-ms viewing durations. Open circles correspond to
behavioral data obtained after the collection of the neural recordings [figure 7D in (12)]. Smooth curves
show fits of a bounded diffusion model, from which we estimate the median decision time to be ~250 ms
across all motion strengths [methods explained in (13, 14)].The neural data analyzed by Latimer et al. (1)
accompanied the behavioral data shown by the filled stars [from figure 7A of (12)]. Accuracy was un-
affected by viewing duration over the range tested, and overall performance was markedly poorer in this
data set. [Data are from figure 7, A andD, in (12),withmissing coherences kindly supplied by Latimer et al.]

RESEARCH | TECHNICAL COMMENT



DOI: 10.1126/science.aad3242
, 1406 (2016);351 Science

 et al.Michael N. Shadlen
discrete steps during decision-making''
Comment on ''Single-trial spike trains in parietal cortex reveal

 This copy is for your personal, non-commercial use only.

 clicking here.colleagues, clients, or customers by 
, you can order high-quality copies for yourIf you wish to distribute this article to others

 
 here.following the guidelines 

 can be obtained byPermission to republish or repurpose articles or portions of articles

 
 ): April 12, 2016 www.sciencemag.org (this information is current as of

The following resources related to this article are available online at

 /content/351/6280/1406.2.full.html
version of this article at: 

including high-resolution figures, can be found in the onlineUpdated information and services, 

 /content/351/6280/1406.2.full.html#ref-list-1
, 7 of which can be accessed free:cites 14 articlesThis article 

 /content/351/6280/1406.2.full.html#related-urls
1 articles hosted by HighWire Press; see:cited by This article has been 

 /cgi/collection/neuroscience
Neuroscience

subject collections:This article appears in the following 

registered trademark of AAAS. 
 is aScience2016 by the American Association for the Advancement of Science; all rights reserved. The title 

CopyrightAmerican Association for the Advancement of Science, 1200 New York Avenue NW, Washington, DC 20005. 
(print ISSN 0036-8075; online ISSN 1095-9203) is published weekly, except the last week in December, by theScience 

on
 A

pr
il 

12
, 2

01
6

D
ow

nl
oa

de
d 

fr
om

 

http://oascentral.sciencemag.org/RealMedia/ads/click_lx.ads/sciencemag/cgi/reprint/L22/1629361667/Top1/AAAS/PDF-Bio-Techne.com-WEBOE-W-007499/RNDsytems.raw/1?x
http://www.sciencemag.org/about/permissions.dtl
http://www.sciencemag.org/about/permissions.dtl

