Neuroscience out of control

Control-theoretic methods for understanding neural circuits

Guillaume Hennequin
g.hennequin@eng.cam.ac.uk

Lisbon, March 2019

6 [...] that means teaching them to think about multidimensional data, that means they actually should all know linear algebra [...]

© [...] that means teaching them to think about multidimensional data, that means they actually should all know linear algebra [...]
matrices \longrightarrow ? \longrightarrow dynamical system
A, B, C

$$
\dot{\mathbf{x}}=\mathbf{A} \mathbf{x}(t)+\mathbf{B u}(t)
$$

$$
y=C x
$$

6 [...] that means teaching them to think about multidimensional data, that means they actually should all know linear algebra [...]
matrices \longrightarrow ? \longrightarrow dynamical system
A, B, C

$$
\dot{\mathbf{x}}=\mathrm{A} \mathbf{x}(t)+\mathrm{Bu}(t)
$$

$$
y=C x
$$

matrices $\longrightarrow ?$ dynamical system
A, B, C

$$
\begin{array}{r}
\dot{\mathbf{x}}=\mathrm{A} \mathbf{x}(t)+\mathrm{B} \mathbf{u}(t) \\
\mathbf{y}=\mathrm{C} \mathbf{x}
\end{array}
$$

many decades of insights from control theory, too rarely used in neuro
a control engineer's job:

many decades of insights from control theory, too rarely used in neuro \because

Linear systems in neuroscience

$$
\tau \frac{d \mathbf{x}}{d t}=-\mathbf{x}+\underset{\downarrow}{\mathbf{W} \mathbf{x}}+\underset{ }{\text { population firing rate vector, or latent variables }}
$$

Linear systems in neuroscience

$$
\tau \frac{d \mathbf{x}}{d t}=-\mathbf{p o p u l a t i o n ~ f i r i n g ~ r a t e ~ v e c t o r , ~ o r ~ l a t e n t ~ v a r i a b l e s ~}
$$

short-term memory

Volume 92, Number 14	PHYSICAL REVIEW LETTERS	$\begin{aligned} & \text { week ending } \\ & 9 \text { APRIL } 2004 \\ & \hline \end{aligned}$
Short-Term Memory in Orthogonal Neural Networks		
Olivia L. White, ${ }^{1}$ Daniel D. Lee, ${ }^{2}$ and Haim Sompolinsky ${ }^{1,3}$		
${ }^{1}$ Harvard University, Cambridge, Massachusetts 02138, USA ${ }^{2}$ University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA		
${ }^{3}$ Racah Institute of Physics and Center for Neural Computation, Hebrew University, Jerusalem 91904, Israel (Received 11 November 2003; published 9 April 2004)		
We study the ability of linear recurrent networks obeying discrete time dynamics to store long temporal sequences that are retrievable from the instantaneous state of the network. We calculate this temporal memory capacity for both distributed shift register and random orthogonal connectivity matrices. We show that the memory capacity of these networks scales with system size.		

Linear systems in neuroscience

$$
\tau \frac{d \mathbf{x}}{d t}=-\mathbf{x}+\mathbf{W} \mathbf{~ p o p u l a t i o n ~ f i r i n g ~ r a t e ~ v e c t o r , ~ o r ~ l a t e n t ~ v a r i a b l e s ~}
$$

> short-term memory

Linear systems in neuroscience

$$
\begin{aligned}
& \tau \frac{d \mathbf{x}}{d t}=-\mathbf{x}+\underset{\downarrow}{\mathbf{W} \mathbf{x}}+\text { external input } \\
& \text { connectivity matrix } \\
& \text { short-term memory }
\end{aligned}
$$

Linear systems in neuroscience

$$
\begin{aligned}
& \tau \frac{d \mathbf{x}}{d t}=-\mathbf{x}+\underset{\downarrow}{\mathbf{W} \mathbf{x}}+\text { external input } \\
& \text { connectivity matrix } \\
& \text { short-term memory }
\end{aligned}
$$

Linear systems in neuroscience

$$
\tau \frac{d \mathbf{x}}{d t}=-\mathbf{p o p u l a t i o n ~ f i r i n g ~ r a t e ~ v e c t o r , ~ o r ~ l a t e n t ~ v a r i a b l e s ~}
$$

short-term memory decision-making

Neuron

Viewpoint

One-Dimensional Dynamics of Attention and Decision Making in LIP

Surya Ganguli, 1,7,* James W. Bisley, ${ }^{2}$ Jamie D. Roitman, ${ }^{3}$ Michael N. Shadlen, ${ }^{4}$ Michael E. Goldberg, ${ }^{5,6}$ and Kenneth D. Miller ${ }^{5,7}$
${ }^{1}$ Sloan-Swartz Center for Theoretical Neurobiology, University of California, San Francisco, San Francisco, CA 94143, USA
${ }^{2}$ Department of Neurobiology, University of California, Los Angeles, Los Angeles, CA 90025, USA

Linear systems in neuroscience

$$
\tau \frac{d \mathbf{x}}{d t}=-\mathbf{x}+\underset{\downarrow}{\mathbf{W} \mathbf{x}}+\text { external input }
$$

short-term memory decision-making V1

Balanced Amplification: A New Mechanism of Selective Amplification of Neural Activity Patterns

Brendan K. Murphy ${ }^{1,2}$
${ }^{1}$ Graduate Group in Bioph ${ }^{2}$ Center for Theoretical Ne College of Physicians and ${ }^{\star}$ Correspondence: ken@n DOI 10.1016/j.neuron. 200

Inhibitory Stabilization of the Cortical Network Underlies Visual Surround Suppression

Hirofumi Ozeki, ${ }^{1}$ Ian M. Finn, ${ }^{1}$ Evan S. Schaffer, ${ }^{2}$ Kenneth D. Miller, ${ }^{2,3,{ }^{*}}$ and David Ferster ${ }^{1,3,{ }^{*}}$
${ }^{1}$ Department of Neurobiology and Physiology, Northwestern University, Evanston, IL 60208, USA
${ }^{2}$ Center for Theoretical Neuroscience and Department of Neuroscience, Columbia University, College of Physicians and New York, NY 10032, USA
${ }^{3}$ These authors contributed equally to this work
*Correspondence: ken@neurotheory.columbia.edu (K.D.M.), ferster@northwestern.edu (D.F.) DOI 10.1016/J.neuron.2009.03.028

Linear systems in neuroscience

$$
\tau \frac{d \mathbf{x}}{d t}=-\mathbf{x}+\underset{\downarrow}{\mathbf{W}} \mathbf{x}+\text { external input }
$$

Optimal Control of Transient Dynamics in Balanced Networks Supports Generation of Complex Movements

Guillaume Hennequin, ${ }^{1,2, *}$ Tim P. Vogels, ${ }^{1,3,4}$ and Wulfram Gerstner ${ }^{1,4}$
${ }^{1}$ School of Computer and
Lausanne (EPFL), 1015 Lz
${ }^{2}$ Department of Engineerii
${ }^{3}$ Centre for Neural Circuits
${ }^{4}$ Co-senior author
*Correspondence: gieh2@
http://dx.doi.org/10.1016/

A neural network that finds a naturalistic solution for the production of muscle activity
David Sussillo ${ }^{1}$, Mark M Churchland ${ }^{2}$, Matthew T Kaufman ${ }^{1,4}$ \& Krishna V Shenoy ${ }^{1,3}$
It remains an open question how neural responses in motor cortex relate to movement. We explored the hypothesis that motor cortex reflects dynamics appropriate for generating temporally patterned outgoing commands. To formalize this hypothesis, wi trained recurrent neural networks to reproduce the muscle activity of reaching monkeys. Models had to infer dynamics that co transform simple inputs into temporally and spatially complex patterns of muscle activity. Analysis of trained models revealed that the natural dynamical solution was a low-dimensional oscillator that generated the necessary multiphasic commands.

Linear systems in neuroscience

$$
\tau \frac{d \mathbf{x}}{d t}=-\mathbf{x}+\underset{\downarrow}{\mathbf{W} \mathbf{x}}+\text { external input }
$$

short-term memory
decision-making
correlations

Linear systems in neuroscience

$$
\tau \frac{d \mathbf{x}}{d t}=-\mathbf{p o p u l a t i o n ~ f i r i n g ~ r a t e ~ v e c t o r , ~ o r ~ l a t e n t ~ v a r i a b l e s ~}
$$

short-term memory decision-making V1 M1 correlations deep learning (!)

Linear systems in neuroscience

$$
\tau \frac{d \mathbf{x}}{d t}=-\mathbf{x}+\mathbf{W} \underset{\downarrow}{\mathbf{W}}+\text { external input }
$$

short-term memory decision-making V1 M1 correlations deep learning (!)

Linear systems in neuroscience

$$
\tau \frac{d \mathbf{x}}{d t}=-\mathbf{x}+\underset{\downarrow}{\mathbf{W} \mathbf{x}}+\text { external input }
$$

short-term memory decision-making V1 M1 correlations
deep learning data analysis / system identification

ARTICLE

Neural population dynamics during reaching

Mark M. Churchland ${ }^{1,2,3 *}$, John P. Cunningham ${ }^{4,5 *}$, Matthew T. Kaufman ${ }^{2,3}$, Justin D. Foster ${ }^{2}$, Paul Nuyujukian ${ }^{6,7}$, Stephen I. Ryu ${ }^{2,8}$ \& Krishna V. Shenoy ${ }^{2,3,6,9}$

Linear systems in neuroscience

Latent variable modeling is all about constraints

Observation Model (data type, function class, nolse model)

[Scott Linderman, this morning]

Analysis of linear dynamics

$$
\mathbf{T} \frac{d \mathbf{x}}{d t}=-\mathbf{p o p u l a t i o n ~ f i r i n g ~ r a t e ~ v e c t o r , ~ o r ~ l a t e n t ~ v a r i a b l e s ~}
$$

- (dynamics analytically solvable)

Analysis of linear dynamics

$$
\mathbf{T} \frac{d \mathbf{x}}{d t}=-\mathbf{x}+\underset{\downarrow}{\mathbf{W} \mathbf{x}}+\text { external input }
$$

- (dynamics analytically solvable)
- eigendecomposition - probably only useful for "normal" architectures [Carandini \& Ringach '97; Dayan \& Abbott '01; Ganguli et al. '08]

Analysis of linear dynamics

$$
\mathbf{T} \frac{d \mathbf{x}}{d t}=-\mathbf{x}+\underset{\downarrow}{\mathbf{W} \mathbf{x}}+\text { external input }
$$

- (dynamics analytically solvable)
- eigendecomposition - probably only useful for "normal" architectures [Carandini \& Ringach '97; Dayan \& Abbott '01; Ganguli et al. '08]
- Schur decomposition - useful description of "nonnormal" architectures, but non-unique [Murphy \& Miller, '09, Goldman '09, Hennequin et al. '12]

Analysis of linear dynamics

$$
\mathbf{T} \frac{d \mathbf{x}}{d t}=-\mathbf{x}+\mathbf{W} \mathbf{~} \mathbf{~} \mathbf{x}+\text { external input }
$$

- (dynamics analytically solvable)
- eigendecomposition - probably only useful for "normal" architectures [Carandini \& Ringach '97; Dayan \& Abbott '01; Ganguli et al. '08]
- Schur decomposition - useful description of "nonnormal" architectures, but non-unique [Murphy \& Miller, '09, Goldman '09, Hennequin et al. '12]

Analysis of linear dynamics

$$
\mathbf{T} \frac{d \mathbf{x}}{d t}=-\mathbf{x}+\mathbf{W} \mathbf{~} \mathbf{x}+\text { external input }
$$

- (dynamics analytically solvable)
- eigendecomposition - probably only useful for "normal" architectures [Carandini \& Ringach '97; Dayan \& Abbott '01; Ganguli et al. '08]
- Schur decomposition - useful description of "nonnormal" architectures, but non-unique [Murphy \& Miller, '09, Goldman '09, Hennequin et al. '12]

[Hennequin et al., Neuron (2014)]

Analysis of linear dynamics

$$
\mathbf{T} \frac{d \mathbf{x}}{d t}=-\mathbf{x}+\mathbf{W} \mathbf{x}+\text { external input }
$$

- (dynamics analytically solvable)
- eigendecomposition - probably only useful for "normal" architectures [Carandini \& Ringach '97; Dayan \& Abbott '01; Ganguli et al. '08]
- Schur decomposition - useful description of "nonnormal" architectures, but non-unique [Murphy \& Miller, '09, Goldman '09, Hennequin et al. '12]

[Hennequin et al., Neuron (2014)]

Analysis of linear dynamics

$$
\mathbf{T} \frac{d \mathbf{x}}{d t}=-\mathbf{x}+\mathbf{W} \mathbf{x}+\text { external input }
$$

- (dynamics analytically solvable)
- eigendecomposition - probably only useful for "normal" architectures [Carandini \& Ringach '97; Dayan \& Abbott '01; Ganguli et al. '08]
- Schur decomposition - useful description of "nonnormal" architectures, but non-unique [Murphy \& Miller, '09, Goldman '09, Hennequin et al. '12]

[Hennequin et al., Neuron (2014)]

Analysis of linear dynamics

$$
\mathbf{T} \frac{d \mathbf{x}}{d t}=-\mathbf{x}+\mathbf{W} \mathbf{x}+\text { external input }
$$

- (dynamics analytically solvable)
- eigendecomposition - probably only useful for "normal" architectures [Carandini \& Ringach '97; Dayan \& Abbott '01; Ganguli et al. '08]
- Schur decomposition - useful description of "nonnormal" architectures, but non-unique [Murphy \& Miller, '09, Goldman '09, Hennequin et al. '12]

[Hennequin et al., Neuron (2014)]

Analysis of linear dynamics

$$
\mathbf{T} \frac{d \mathbf{x}}{d t}=-\mathbf{x}+\mathbf{W} \mathbf{~ p o p u l a t i o n ~ f i r i n g ~ r a t e ~ v e c t o r , ~ o r ~ l a t e n t ~ v a r i a b l e s ~}
$$

- (dynamics analytically solvable)
- eigendecomposition - probably only useful for "normal" architectures [Carandini \& Ringach '97; Dayan \& Abbott '01; Ganguli et al. '08]
- Schur decomposition - useful description of "nonnormal" architectures, but non-unique [Murphy \& Miller, '09, Goldman '09, Hennequin et al. '12]

[Hennequin et al., Neuron (2014)]

Analysis of linear dynamics

$$
\mathbf{T} \frac{d \mathbf{x}}{d t}=-\mathbf{x}+\mathbf{W} \mathbf{~ p o p u l a t i o n ~ f i r i n g ~ r a t e ~ v e c t o r , ~ o r ~ l a t e n t ~ v a r i a b l e s ~}
$$

- (dynamics analytically solvable)
- eigendecomposition - probably only useful for "normal" architectures [Carandini \& Ringach '97; Dayan \& Abbott '01; Ganguli et al. '08]
- Schur decomposition - useful description of "nonnormal" architectures, but non-unique [Murphy \& Miller, '09, Goldman '09, Hennequin et al. '12]

[Hennequin et al., Neuron (2014)]

Analysis of linear dynamics

$$
\mathbf{T} \frac{d \mathbf{x}}{d t}=-\mathbf{x}+\mathbf{W} \mathbf{~ p o p u l a t i o n ~ f i r i n g ~ r a t e ~ v e c t o r , ~ o r ~ l a t e n t ~ v a r i a b l e s ~}
$$

- (dynamics analytically solvable)
- eigendecomposition - probably only useful for "normal" architectures [Carandini \& Ringach '97; Dayan \& Abbott '01; Ganguli et al. '08]
- Schur decomposition - useful description of "nonnormal" architectures, but non-unique [Murphy \& Miller, '09, Goldman '09, Hennequin et al. '12]

[Hennequin et al., Neuron (2014)]

Analysis of linear dynamics

$$
\mathbf{T} \frac{d \mathbf{x}}{d t}=-\mathbf{x}+\mathbf{W} \mathbf{~ p o p u l a t i o n ~ f i r i n g ~ r a t e ~ v e c t o r , ~ o r ~ l a t e n t ~ v a r i a b l e s ~}
$$

- (dynamics analytically solvable)
- eigendecomposition - probably only useful for "normal" architectures [Carandini \& Ringach '97; Dayan \& Abbott '01; Ganguli et al. '08]
- Schur decomposition - useful description of "nonnormal" architectures, but non-unique [Murphy \& Miller, '09, Goldman '09, Hennequin et al. '12]

[Hennequin et al., Neuron (2014)]

Analysis of linear dynamics

$$
\mathbf{T} \frac{d \mathbf{x}}{d t}=-\mathbf{x}+\mathbf{W} \mathbf{x}+\text { external input }
$$

- (dynamics analytically solvable)
- eigendecomposition - probably only useful for "normal" architectures [Carandini \& Ringach '97; Dayan \& Abbott '01; Ganguli et al. '08]
- Schur decomposition - useful description of "nonnormal" architectures, but non-unique [Murphy \& Miller, '09, Goldman '09, Hennequin et al. '12]

Analysis of linear dynamics

$$
\mathbf{T} \frac{d \mathbf{x}}{d t}=-\mathbf{x}+\mathbf{W} \mathbf{x}+\text { external input }
$$

- (dynamics analytically solvable)
- eigendecomposition - probably only useful for "normal" architectures [Carandini \& Ringach '97; Dayan \& Abbott '01; Ganguli et al. '08]
- Schur decomposition - useful description of "nonnormal" architectures, but non-unique [Murphy \& Miller, '09, Goldman '09, Hennequin et al. '12]

Controllability \& Observability

(two-sided "extension of PCA" to dynamical systems)

controllability \& observability are core concepts in control-theory that afford useful re-interpretations for the analysis of circuits

Controllability \& Observability

Controllability \& Observability

using these input channels, can I steer \mathbf{x} from $\mathbf{0}$ to any \mathbf{v} ?

Controllability \& Observability

using these input channels, can I steer \mathbf{x} from $\mathbf{0}$ to any \mathbf{v} ?
controllability Gramian $\mathbf{P} \succeq 0$

$$
\mathbf{P} \equiv \int_{0}^{\infty} \exp (t \mathbf{A}) \mathbf{B B}^{T} \exp \left(t \mathbf{A}^{T}\right) d t
$$

Controllability \& Observability

using these input channels, can I steer \mathbf{x} from $\mathbf{0}$ to any \mathbf{v} ?
controllability Gramian $\mathbf{P} \succeq 0$

$$
\mathbf{A P}+\mathbf{P} \mathbf{A}^{T}+\mathbf{B B}^{T}=0
$$

Controllability \& Observability

using these input channels, can \mid steer \mathbf{x} from $\mathbf{0}$ to any \mathbf{v} ?

$$
\text { controllability Gramian } \mathbf{P} \succeq 0
$$

$$
\mathbf{A P}+\mathbf{P} \mathbf{A}^{T}+\mathbf{B B}^{T}=0
$$

answer is yes,
provided \mathbf{P} is non-singular
more generally, $\mathbf{v}^{T} \mathbf{P}^{-1} \mathbf{v}$ is
how much input energy is required

Controllability \& Observability

using these input channels, can \mid steer \mathbf{x} from $\mathbf{0}$ to any \mathbf{v} ?
controllability Gramian $\mathbf{P} \succeq 0$

$$
\mathbf{A P}+\mathbf{P} \mathrm{A}^{T}+\mathrm{BB}^{T}=0
$$

answer is yes,
provided \mathbf{P} is non-singular
more generally, $\mathbf{v}^{T} \mathbf{P}^{-1} \mathbf{v}$ is
how much input energy is required

time

Controllability \& Observability

using these input channels, can \mid steer \mathbf{x} from $\mathbf{0}$ to any \mathbf{v} ?
controllability Gramian $\mathbf{P} \succeq 0$

$$
\mathbf{A P}+\mathbf{P} \mathrm{A}^{T}+\mathrm{BB}^{T}=0
$$

answer is yes,
provided \mathbf{P} is non-singular
more generally, $\mathbf{v}^{T} \mathbf{P}^{-1} \mathbf{v}$ is
how much input energy is required

time

Controllability \& Observability

using these input channels, can I steer \mathbf{x} from $\mathbf{0}$ to any \mathbf{v} ?
controllability Gramian $\mathbf{P} \succeq 0$

$$
\mathbf{A P}+\mathbf{P} \mathbf{A}^{T}+\mathbf{B B}^{T}=0
$$

answer is yes,
provided \mathbf{P} is non-singular
more generally, $\mathbf{v}^{T} \mathbf{P}^{-1} \mathbf{v}$ is
how much input energy is required

time

Controllability \& Observability

using these input channels, can I steer \mathbf{x} from $\mathbf{0}$ to any \mathbf{v} ?
controllability Gramian $\mathbf{P} \succeq 0$

$$
\mathbf{A P}+\mathbf{P A}^{T}+\mathrm{BB}^{T}=0
$$

answer is yes,
provided \mathbf{P} is non-singular
more generally, $\mathbf{v}^{T} \mathbf{P}^{-1} \mathbf{v}$ is
how much input energy is required

if $\mathbf{u}(t)=$ white noise

$$
\mathbf{P}=\left\langle\mathbf{x}(t) \mathbf{x}(t)^{T}\right\rangle_{t}
$$

cf. "intrinsic manifold" [Sadtler et al., Nature (2010)]

Controllability \& Observability

Controllability \& Observability

if I observe $\mathbf{u}(t)$ and $\mathbf{y}(t)$, can I reconstruct the initial state $\mathbf{x}(0)$?

Controllability \& Observability

if I observe $\mathbf{u}(t)$ and $\mathbf{y}(t)$, can I reconstruct the initial state $\mathbf{x}(0)$?
observability Gramian $\mathbf{Q} \succeq 0$

$$
\mathbf{Q} \equiv \int_{0}^{\infty} \exp \left(t \mathbf{A}^{T}\right) \mathbf{C}^{T} \mathbf{C} \exp (t \mathbf{A}) d t
$$

Controllability \& Observability

if I observe $\mathbf{u}(t)$ and $\mathbf{y}(t)$, can I reconstruct the initial state $\mathbf{x}(0)$?
observability Gramian $\mathbf{Q} \succeq 0$

$$
\mathbf{A}^{T} \mathbf{Q}+\mathbf{Q} \mathbf{A}+\mathbf{C}^{\top} \mathbf{C}=0
$$

Controllability \& Observability

if I observe $\mathbf{u}(t)$ and $\mathbf{y}(t)$, can I reconstruct the initial state $\mathbf{x}(0)$?

$$
\text { observability Gramian } \mathbf{Q} \succeq 0
$$

$$
\mathbf{A}^{T} \mathbf{Q}+\mathbf{Q} \mathbf{A}+\mathbf{C}^{\top} \mathbf{C}=0
$$

answer is yes, provided \mathbf{Q} is non-singular

Controllability \& Observability

alternative, useful interpretation:
$\mathbf{x}_{0}^{T} \mathbf{Q} \mathbf{x}_{0}$ is the output energy
evoked by initial condition \mathbf{x}_{0}

[Hennequin et al., Neuron (2014)]

if I observe $\mathbf{u}(t)$ and $\mathbf{y}(t)$, can I reconstruct the initial state $\mathbf{x}(0)$?

$$
\text { observability Gramian } \mathbf{Q} \succeq 0
$$

$$
\mathbf{A}^{T} \mathbf{Q}+\mathbf{Q} \mathbf{A}+\mathbf{C}^{\top} \mathbf{C}=0
$$

answer is yes, provided \mathbf{Q} is non-singular

Controllability \& Observability

alternative, useful interpretation:
$\mathbf{x}_{0}^{\top} \mathbf{Q} \mathbf{x}_{0}$ is the output energy evoked by initial condition \mathbf{x}_{0}

[Hennequin et al., Neuron (2014)]
optimized light pattern random light patterns -

if I observe $\mathbf{u}(t)$ and $\mathbf{y}(t)$, can I reconstruct the initial state $\mathbf{x}(0)$?

$$
\text { observability Gramian } \mathbf{Q} \succeq 0
$$

$$
\mathbf{A}^{T} \mathbf{Q}+\mathbf{Q} \mathbf{A}+\mathbf{C}^{T} \mathbf{C}=0
$$

answer is yes, provided \mathbf{Q} is non-singular

Controllability \& Observability

alternative, useful interpretation:
$\mathbf{x}_{0}^{\top} \mathbf{Q} \mathbf{x}_{0}$ is the output energy
evoked by initial condition \mathbf{x}_{0}

if I observe $\mathbf{u}(t)$ and $\mathbf{y}(t)$, can I reconstruct the initial state $\mathbf{x}(0)$?

$$
\text { observability Gramian } \mathbf{Q} \succeq 0
$$

$$
\mathbf{A}^{T} \mathbf{Q}+\mathbf{Q} \mathbf{A}+\mathbf{C}^{T} \mathbf{C}=0
$$

answer is yes, provided \mathbf{Q} is non-singular

Controllability \& Observability

alternative, useful interpretation:
$\mathbf{x}_{0}^{\top} \mathbf{Q} \mathbf{x}_{0}$ is the output energy
evoked by initial condition \mathbf{x}_{0}

if I observe $\mathbf{u}(t)$ and $\mathbf{y}(t)$, can I reconstruct the initial state $\mathbf{x}(0)$?

$$
\text { observability Gramian } \mathbf{Q} \succeq 0
$$

$$
\mathbf{A}^{T} \mathbf{Q}+\mathbf{Q} \mathbf{A}+\mathbf{C}^{T} \mathbf{C}=0
$$

answer is yes, provided \mathbf{Q} is non-singular

Controllability \& Observability

alternative, useful interpretation:
$\mathbf{x}_{0}^{T} \mathbf{Q} \mathbf{x}_{0}$ is the output energy
evoked by initial condition \mathbf{x}_{0}

if I observe $\mathbf{u}(t)$ and $\mathbf{y}(t)$, can I reconstruct the initial state $\mathbf{x}(0)$?

$$
\text { observability Gramian } \mathbf{Q} \succeq 0
$$

$$
\mathbf{A}^{T} \mathbf{Q}+\mathbf{Q} \mathbf{A}+\mathbf{C}^{T} \mathbf{C}=0
$$

answer is yes, provided \mathbf{Q} is non-singular
"dynamical nullspace" [Duncker et al., Cosyne '17]

Model reduction

classic methods try to capture the top subspace of both \mathbf{P} and \mathbf{Q}
fun fact: for our ISN model of M1, we recover rotational dynamics (also revealed by jPCA)

Observability \& Controllability

Observability \& Controllability

(input) u
!
observability:
"what input patterns is
my network most/least sensitive to?"'
controllability:
"what activity patterns does my network like/hate to produce?"
\mathbf{P} and \mathbf{Q} are all you need to know about \mathbf{A}
for biologically realistic (nonnormal) networks, $\mathbf{P} \neq \mathbf{Q}$
[Kao, Sadabadi \& Hennequin, Cosyne '18]

Observability \& Controllability

(input) \mathbf{u}
observability:
"what input patterns is
my network most/least sensitive to?"'
controllability:
"what activity patterns does my network like/hate to produce?"
\mathbf{P} and \mathbf{Q} are all you need to know about \mathbf{A}
for biologically realistic (nonnormal) networks, $\mathbf{P} \neq \mathbf{Q}$
[Kao, Sadabadi \& Hennequin, Cosyne '18]
implications for system identification?

Observability \& Controllability

\mathbf{P} and \mathbf{Q} are all you need to know about \mathbf{A}
for biologically realistic (nonnormal) networks, $\mathbf{P} \neq \mathbf{Q}$
[Kao, Sadabadi \& Hennequin, Cosyne '18]
implications for system identification?

System identification

simplified scenario $(N=5)$:
$\mathbf{x}_{t+1}=A \mathbf{x}_{t}+$ noise
Calvin Kao
$\mathbf{y}_{t}=\mathbf{x}_{t}+$ noise
maximum likelihood parameter estimation (new method, regularised, stable)
$\hat{\mathbf{A}}=\operatorname{argmax}_{\mathrm{A}} \log p\left(\mathbf{y}_{0: T} \mid \mathbf{A}\right)$

System identification

simplified scenario $(N=5)$:
$\mathbf{x}_{t+1}=\mathbf{A} \mathbf{x}_{t}+$ noise
$\mathbf{y}_{t}=\mathbf{x}_{t}+$ noise
maximum likelihood parameter estimation (new method, regularised, stable)

$\hat{\mathbf{A}}=\operatorname{argmax}_{\mathrm{A}} \log p\left(\mathbf{y}_{0: T} \mid \mathbf{A}\right)$

System identification

simplified scenario $(N=5)$:
$\mathbf{x}_{t+1}=\mathbf{A} \mathbf{x}_{t}+$ noise
$\mathbf{y}_{t}=\mathbf{x}_{t}+$ noise
maximum likelihood parameter estimation (new method, regularised, stable)

$\hat{\mathbf{A}}=\operatorname{argmax}_{\mathrm{A}} \log p\left(\mathbf{y}_{0: T} \mid \mathbf{A}\right)$

Q recovered less accurately than \mathbf{P}
learned model not very predictive of the effect of stimulation

Outlook

control-theoretic perspectives on RNNs offers new ways of understanding them (here, we've barely scratched the surface)
use of optogenetic access to constrain I/O models of neural circuits
motor control, BCls , reinforcement learning, behavioural modelling, ...

