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SUMMARY

Populations of neurons in motor cortex engage in
complex transient dynamics of large amplitude dur-
ing the execution of limb movements. Traditional
network models with stochastically assigned synap-
ses cannot reproduce this behavior. Here we intro-
duce a class of cortical architectures with strong
and random excitatory recurrence that is stabilized
by intricate, fine-tuned inhibition, optimized from
a control theory perspective. Such networks tran-
siently amplify specific activity states and can be
used to reliably execute multidimensional move-
ment patterns. Similar to the experimental observa-
tions, these transients must be preceded by a
steady-state initialization phase from which the
network relaxes back into the background state by
way of complex internal dynamics. In our networks,
excitation and inhibition are as tightly balanced as
recently reported in experiments across several
brain areas, suggesting inhibitory control of complex
excitatory recurrence as a generic organizational
principle in cortex.

INTRODUCTION

The neural basis for movement generation has been the focus

of several recent experimental studies (Churchland et al., 2010,

2012; Ames et al., 2014). In a typical experiment (Figure 1A), a

monkey is trained to prepare a particular arm movement and

execute it after the presentation of a go cue. Concurrent elec-

trophysiological recordings in cortical motor and premotor

areas show an activity transition from spontaneous firing into

a movement-specific preparatory state with firing rates that

remain stable until the go cue is presented (Figure 1B).

Following the go cue, network dynamics begin to display

quickly changing, multiphasic firing rate responses that form

spatially and temporally complex patterns and eventually relax

toward spontaneous activation levels (Churchland and Shenoy,

2007).

Recent studies (Afshar et al., 2011; Shenoy et al., 2011) have

suggested a mechanism similar to a spring-loaded box, in which

motor populations could act as a generic dynamical system that

is driven into specific patterns of collective activity by prepara-

tory stimuli (Figure 1). When released, intrinsic population dy-

namics would commandeer the network activity and orchestrate

a sequence of motor commands leading to the correct move-

ment. The requirements for a dynamical system of this sort are

manifold. It must be highly malleable during the preparatory

period, excitable and fast when movement is triggered, and sta-

ble enough to return to rest after an activity transient. Moreover,

the dynamicsmust be sufficiently rich to support complexmove-

ment patterns (Maass et al., 2002; Sussillo and Abbott, 2009;

Laje and Buonomano, 2013).

How the cortical networks at the heart of this black box

(Figure 1C) could generate such complex transient amplifica-

tion through recurrent interactions is still poorly understood.

Randomly connected, globally balanced networks of leaky inte-

grate-and-fire (LIF) neurons exhibit stable background states

(van Vreeswijk and Sompolinsky, 1996; Tsodyks et al., 1997;

Brunel, 2000; Vogels et al., 2005; Renart et al., 2010) but cannot

autonomously produce the substantial yet reliable, spatially

patterned departure from background activity observed in the

experiments. Networks with strong recurrent pathways can

exhibit ongoing, complex rate fluctuations beyond the popula-

tion mean (Sompolinsky et al., 1988; Sussillo and Abbott,

2009; Rajan et al., 2010; Litwin-Kumar and Doiron, 2012; Ostojic,

2014) but do not capture the transient nature of movement-

related activity. Moreover, such rate dynamics are chaotic, and

sensitivity to noise seems improper in a situation in which the

initial conditions dictate the subsequent evolution of the system.

Chaos can be controlled either through continuous external

feedback loops, or modifications of the recurrent connectivity it-

self (Sussillo and Abbott, 2009; Laje and Buonomano, 2013;

Hoerzer et al., 2014). However, all of these models violate Dale’s

principle, according to which neurons can be either excitatory

or inhibitory, but not of a mixed type. In other words, there

is currently no biologically plausible network model to imple-

ment the spring-loaded box of Figure 1C, i.e., a system that
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well-chosen inputs can prompt to autonomously generate multi-

phasic transients of large amplitude.

Here we introduce a class of neuronal networks composed

of excitatory and inhibitory neurons that, similarly to chaotic

networks, rely on strong and intricate excitatory synaptic

pathways. Because traditional homogeneous inhibition is not

enough to quench and balance chaotic firing rate fluctuations in

these networks, we build a sophisticated inhibitory coun-

terstructure that successfully dampens chaotic behavior but

allows strong and fast break-out transients of activity. This inhib-

itory architecture is constructed with the help of an optimization

algorithm that aims to stabilize the activity of each unit by adjust-

ing the strength of existing inhibitory synapses, or by adding or

pruning inhibitory connections. The result is a strongly connected,

but nonchaotic, balanced network that otherwise looks random.

We refer to such networks as ‘‘stability-optimized circuits,’’ or

SOCs.We study both a rate-based formulation of SOC dynamics

and a more realistic spiking implementation. We show that

external stimuli can force these networks into unique and stable

activity states.When input iswithdrawn, thesubsequent free tran-

sient dynamics are in good qualitative agreement with the motor

cortex data on single-cell and network-wide levels.

We show that SOCs connect unrelated aspects of balanced

cortical dynamics. The mechanism that underlies the genera-

tion of large transients here is a more general form of ‘‘balanced

amplification’’ (Murphy and Miller, 2009), which was previously

discovered in the context of visual cortical dynamics. Addition-

ally, during spontaneous activity in SOCs, a ‘‘detailed balance’’

(Vogels and Abbott, 2009) of excitatory and inhibitory inputs

emerges, but it is much finer than expected from

shared population fluctuations (Okun and Lampl, 2008; Cafaro

and Rieke, 2010; Renart et al., 2010), beyond also what is

possible with recently published inhibitory learning rules (Vo-

gels et al., 2011; Luz and Shamir, 2012) that only alter the

weights of inhibitory synapses, but not the structure of the

network itself. Preparing such exquisitely balanced systems

with an external stimulus into a desired initial state will then

lead to momentary but dramatic departure from balance,

demonstrating how realistically shaped cortical architectures

can produce a large library of unique, transient activity patterns

that can be decoded into motor commands.

RESULTS

We are interested in studying how neural systems (Figure 1C)

can produce the large, autonomous, and stable ‘‘spring-box

dynamics’’ as described above. We first investigate how to

construct the architectures that display such behavior and

show how their activity can be manipulated to produce motor-

like activity. We then discuss the implications of the proposed

architecture for the joint dynamics of excitation and inhibition.

Finally, we confirm our results in a more realistic spiking

network.

SOCs
We use N = 200 interconnected rate units (Dayan and Abbott,

2001; Gerstner and Kistler, 2002), of which 100 are excitatory

and 100 are inhibitory. We describe the temporal evolution of

their ‘‘potentials,’’ gathered in a vector x(t), according to

t
dx

dt
= � xðtÞ+ IðtÞ+WDrðx; tÞ (1)

where t = 200ms, the combined time constant of membrane and

synaptic dynamics, is set to match the dominant timescale in the

data of Churchland et al. (2012). I(t) = x(t) + S(t) denotes all

external inputs, i.e., an independent noise term x(t) and a spe-

cific, patterned external stimulation S(t). The vector Dr(x,t) con-

tains the instantaneous single-unit firing rates, measured relative

to a low level of spontaneous activity (r0 = 5 Hz). These rates are

given by the nonlinear function Dri = g(xi) of the potentials (Fig-

ure 3E and Experimental Procedures), although we also consider

the linear caseDrif xi in our analysis. The final term in Equation 1

accounts for the recurrent dynamics of the systemdue to its con-

nectivity W. We focus here on connectivities that obey Dale’s

principle, i.e., on weight matrices composed of separate positive

and negative columns.

Random balanced networks can have qualitatively different

types of dynamics depending on the overall magnitude of W.

A

B

C

Figure 1. Dynamical Systems View of Movement Planning and

Execution

(A) A typical delayed movement generation task starts with the instruction of

what movement must be prepared. The arm must then be held still until the go

cue is given, upon which the movement is performed.

(B) During the preparatory period, model neurons receive a ramp input (green).

Following the go cue, that input is withdrawn, leaving the network activity free

to evolve from the initial condition set up during the preparatory period. Model

neurons then exhibit transient oscillations (black) that drive muscle activity

(red).

(C) Black-box view on movement generation. Muscles (red, right) are thought

to be activated by a population of motor cortical neurons (‘‘neural dynamical

system,’’ middle). To prepare the movement, this network is initialized in a

desired state by the slow activation of a movement-specific pool of neurons

(green, left).
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With weak synapses, their activity decays rapidly against base-

line when perturbed (not shown). To yield a more interesting,

qualitatively different behavior, one can strengthen the existing

connections (Figure 2C, left; Experimental Procedures),

increasing the radius of the characteristically circular distribution

of eigenvalues (Rajan and Abbott, 2006; Figure 2B). Small pertur-

bations of the network dynamics can now propagate chaotically

across the network (Sompolinsky et al., 1988; Rajan et al., 2010;

Ostojic, 2014), generating uncontrollable, switch-like fluctua-

tions in the neurons’ firing rates even without external drive

(Figure 2E).

Here we construct nonchaotic networks that exhibit stable

background activity but retain interesting dynamical properties.

Starting with the above-mentioned deeply chaotic network, we

build a second network, a SOC (Figure 2A). The excitatory con-

nections are kept identical to those in the reference network (Fig-

ure 2C), but the inhibitory connections are no longer drawn

randomly. Instead, they are precisely matched against the excit-

atory connectivity. This ‘‘matching’’ is achieved by an algorithmic

optimization procedure that modifies the inhibitory weights and

wiring patterns of the reference network, aiming to pull the unsta-

ble eigenvalues of W toward stability (Experimental Procedures

and Movie S1 available online). The total number of inhibitory

connections is increased and the distribution of their strengths

is wider, but the mean inhibitory weight is kept the same (Fig-

ure 2D). The resulting SOC network is as strongly connected

as the reference chaotic network, but it is no longer chaotic, as

indicated by the distribution of its eigenvalues in the complex

plane, which all lie well within the stable side (Figure 2B, black

dots). Accordingly, the background activity is now stable (Fig-

ure 2E), with small noisy fluctuations around the mean caused

by x(t). Shuffling the optimal inhibitory connectivity results in

chaotic dynamics similar to the reference network (not shown),

indicating that it is not the broad, sparse distribution of inhibitory

weights but the precise inhibitory wiring pattern that stabilizes

the dynamics.

SOCs Exhibit Complex Transient Amplification
To test whether SOCs can produce the type of complex transient

behavior seen in experiments (Churchland and Shenoy, 2007;

Churchland et al., 2012; cf. also Figure 1), wemomentarily clamp

each unit to a specific firing rate and then observe the network as

it relaxes to the background state (later, we model the prepara-

tory period explicitly). Depending on the spatial pattern of initial

stimulation, the network activity exhibits a variety of transient be-

haviors. Some initial conditions result in fast monotonous decay

toward rest, whereas others drive large transient deviations from

baseline rate in most neurons.

To quantify this amplifying behavior of the network in

response to a stimulus, we introduce the notion of ‘‘evoked

energy’’ E(a), measuring both the amplitude and duration of

the collective transient evoked by initial condition a for a given

A B

C D

E F

Figure 2. SOCs

(A) Schematic of a SOC. A population of rate units

is recurrently connected, with strong and intricate

excitatory pathways (red) that would normally

produce unstable, chaotic activity. Stabilization is

achieved through fine-tuned inhibitory feedback

(blue).

(B) Eigenvalue spectrum of the connectivity matrix

of a SOC (black) and that of the chaotic random

network from which it is derived (gray). Stability

requires all eigenvalues to lie to the left of the

dashed vertical line. Note the large negative real

eigenvalue, which corresponds to the spatially

uniform activity pattern.

(C) Matrices of synaptic connectivity before

(unstable) and after (SOC) stability optimization

through inhibitory tuning. By design, the excitatory

weights are the same in both matrices. Matrices

were thinned out to 40 3 40 for visualization pur-

poses. The bottom row shows the strengths of all

the inhibitory input synapses to a single sample

neuron, in the unstable network (gray) and in the

corresponding SOC (black).

(D) Distribution of inhibitory weights in the unstable

network (10% connection density, gray peak at

Wij � �3.18) and in the stabilized version (40%

connection density, black). The mean inhibitory

weight of all possible synapses is the same before

and after optimization (� �0.318, gray and black

arrowheads).

(E and F) Spontaneous activity in the unstable

network (E) and in the SOC (F), for four example

units. Note the difference in firing rate scales.

Neuron

Rich Transients in Stability-Optimized Circuits

1396 Neuron 82, 1394–1406, June 18, 2014 ª2014 Elsevier Inc.



SOC compared to an unconnected network (Experimental

Procedures). Of all initial conditions Dr with constant power

s2 =
P

i Dri
2/N, we find the one that maximizes this energy

and call it a1. We repeat this procedure among all patterns

orthogonal to a1 to obtain the second best pattern a2, and

iterate until we have filled a full basis of N = 200 orthogonal

initial conditions {a1, a2, ..., aN} (an analytical solution exists

for the linear case, Dri f xi; cf. Experimental Procedures). A

large set of these orthogonal initial conditions are transiently

amplified by the connectivity of the network, with the strongest

states evoking energies �25 times greater than expected from

the exponential decay of activity in unconnected neurons

(Figure 3A). For these strongly amplifying states, the popula-

tion-averaged firing rate remains roughly constant during the

transient (red line in Figure 3B, middle), but the average abso-

lute deviation from baseline firing rate per unit can grow dramat-

ically (Figure 3B, top), because some units become more

active and others become less active than baseline. Amplifying

behavior progressively attenuates but subsists for roughly the

first half of the basis (a1, a2, ., a100). Eventually, amplification

disappears, and even turns into active dampening of the initial

condition (Figure 3A, green dots). For a200, the least amplifying

initial condition, return to rest occurs three times faster than it

would in unconnected neurons (Figure 3B). Here, the least-

preferred state a200 corresponds to the uniform spatial mode

of activity (1, 1, ., 1), i.e., the trivial case in which all neurons

are initialized slightly above (or below) their baseline rate.

Finally, if we increase the firing rate standard deviation s in the

initial condition, such that a substantial number of (excitatory and

inhibitory) neurons will reach lower saturation and stop firing dur-

ing the transient, the duration of the response increases (Figures

3C and 3D). For s > 3 Hz the network response begins to self-

sustain in the chaotic regime (not shown). This behavior is

beyond the scope of our study, and in the following we set s =

1.5 Hz, which results in transients of �1 s duration. Note also

that we did not observe a return to chaotic behavior in the full

spiking network, even though firing rates in the initial conditions

deviated more dramatically from baseline.

SOC Dynamics Are Consistent with Experimental Data
In Churchland et al. (2012), monkeys were trained to perform 27

different cued and delayed arm movements (Figure 1A). The ac-

tivity of the neurons recorded during this task (Figure 4A) dis-

played transient activity similar to the responses of appropriately

initialized SOCs (Figure 3C). To model this behavior, we assume

that each of the 27 instructed movements is associated with a

pool of prefrontal cortical neurons (Figure 1C) feeding the motor

network through sets of properly tuned input weights

A

E

B C D

Figure 3. Transient Amplification in SOCs

(A) The energy E evoked by N = 200 orthogonal initial conditions (a1,., aN) as the network evolves linearly (Dri = xi) with no further input according to Equation 1.

The energy (Equation 4) is normalized such that it equals 1 for an unconnected network (W = 0) irrespective of the initial condition (dashed horizontal line). Each

successive initial condition ai is defined as the one that evokes maximum energy, within the subspace orthogonal to all previous input patterns aj < i (Experimental

Procedures). The black arrowhead indicates the mean, or the expected evoked energy E0 when the neurons are initialized in a random activity state.

(B) Dynamics of the SOC in the linear regime. Top: time evolution of kDrk/ON, whichmeasures the momentary spread of firing rates in the network above or below

baseline, as the dynamics unfold from any of the ten best or ten worst initial states (same color code as in A). Initial states have a s = 1.5 Hz across the population.

The dashed gray line shows s 3 exp(�t/t), i.e., the behavior of an unconnected pool of neurons. Bottom: sample firing rate responses of ten randomly chosen

neurons following initialization in state a1 or a199. The red line indicates the momentary population-averaged firing rate.

(C and D) Same as in (B), now with the nonlinear gain function shown in (E). Unlike in the linear case, the dynamics now depend on the spread s of the initial firing

rates across the network (1.5 Hz in C as in B, 2 Hz in D). The larger this spread, the longer the duration of the population transient. When s > 3 Hz, the network

initiates self-sustained chaotic activity (not shown).

(E) Single-unit input-output nonlinearity [solid line, Dri = g(xi) given by Equation 2] and its linearization (dashed line, Dri = xi).
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(Experimental Procedures). For a given movement, the corre-

sponding command pool becomes progressively more active

during the 1-s-long delay period (Amit and Brunel, 1997;

Wang, 1999). Remarkably, this simple input drives the SOC

into a stable steady state (Figure 4B). By adjusting the move-

ment-specific input weights, we canmanipulate this steady state

and force the network into a specific spatial arrangement of ac-

tivity. This is not possible in generic chaotic networks in which

external inputs are overwhelmed by a strong and uncontrolled

recurrent activity. We chose the input weights such that, by the

end of the delay period, the network arrives at a state that is

one of 27 different linear combinations of a1 and a2, i.e., the

two orthogonal activity states that evoke the strongest collective

responses. The go cue quickly silences the command pool, leav-

ing the network free to depart from its preparatory state and to

engage in transient amplification. The resulting recurrent dy-

namics produce strong, multiphasic, andmovement-specific re-

sponses in single units (Figure 4B), qualitatively similar to the

data.

In the data of Churchland et al. (2012), the complexity of the

single-neuron multiphasic responses was in fact hiding orderly

rotational dynamics on the population level. A plane of projection

could be found in which the vector of population firing activity

[Dr(t) in our model] would start rotating after the go cue, and

consistently rotate in the same direction for all movements (Fig-

ure 4C). Our model, analyzed with the same dynamical variant

of principal component analysis (jPCA, Churchland et al.,

2012; Experimental Procedures) displays the same phenomenon

(Figure 4D).

SOCs Can Generate Complex Movements
The complicated, multiphasic nature of the firing rate transients

in SOCs suggests the possibility of reading out equally complex

patterns of muscle activity. We illustrate this idea in a task in

which the joint activation of two muscles must produce one of

two target movements (‘‘snake’’ or ‘‘butterfly’’ in Figure 5), within

500 ms following the go cue. Similarly to Figure 4, the prepara-

tory input for the ‘‘snake’’ (respectively ‘‘butterfly’’) movement

is chosen such that, by the arrival of the go cue, the network

activity matches the network’s preferred initial condition a1
(respectively a2). Two readout units (‘‘muscles’’) compute a

weighted sum of all neuronal activities in the network that we

take to directly reflect the horizontal and vertical coordinates of

the movement. Simple least-squares regression learning of the

output weights (Experimental Procedures) can map the activity

following each command onto the correct trajectory (compare

the five test trials in Figure 5A).

We conclude that the SOC’s single-neuron responses form a

set of basis functions that is rich enough to allow readout of

nontrivial movements. This is not possible in untuned, chaotic

balanced networks without exquisite feedback loops or super-

vised learning of lateral connections (Sussillo and Abbott,

2009; Laje and Buonomano, 2013; Hoerzer et al., 2014) because

of the high sensitivity to noise. Furthermore, in balanced net-

works with weak connections, each neuron’s activity decays

exponentially: this redundancy prevents the network to robustly

learn the snake and butterfly trajectories (Figure 5B).

Interaction between Excitation and Inhibition in SOCs
To understand the mechanism by which SOCs amplify their

preferred inputs, we dissociated the excitatory (cE) and inhibitory

(cI) synaptic inputs each unit received from other units in the

network in the absence of specific external stimulation [S(t) =

0]. We quantified the excitation/inhibition balance by rEI(t), the

momentary Pearson correlation coefficient between cE and cI
across the network population. The preferred initial states of

the SOC momentarily produce substantially negative excita-

tion/inhibition input correlations (Figure 6A), indicating an

averagemismatch between excitatory and inhibitory inputs. Bal-

ance is then quickly restored by internal network dynamics, with

rEI(t) reaching�0.8 at the peak of the transient triggered by initial

condition a1. The effect subsists, although progressively attenu-

ated, for roughly the first 100 preferred initial states (a1, a2, ...,

a100), which are also the initial states that trigger amplified

responses.

Notably, the patterns of neuronal activity after 100ms of recur-

rent processing have a larger amplitude than—but bear little

spatial resemblance to—the initial condition. This is reflected

by a rapid decay (within 100 ms) of the correlation coefficient

between the momentary network activity and the initial state

(Figure 6B, black). However, considering the excitatory and

A B

C D

Figure 4. SOCs Agree with Experimental Data

(A) Experimental data, adapted with permission from Churchland et al. (2012).

Each trace denotes the trial-averaged firing rate of a single cell (two sample

cells are shown here) during a delayed reaching task. Each trace corresponds

to one of 27 different movements. Vertical scale bars denote 20 spikes/s. The

go cue is not explicitly marked here, but it occurs about 200 ms before

movement onset.

(B) Time-varying firing rates of two neurons in the SOC, for 27 ‘‘conditions,’’

each characterized by a different collective steady state of preparatory activity

(see text).

(C) Experimental data adapted from Churchland et al. (2012), showing the

first 200 ms of movement-related population activity projected onto the top

jPC plane. Each trajectory corresponds to one of the 27 conditions mentioned

in (A).

(D) Same analysis as in (C), for the SOC.
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inhibitory populations separately shows that the excitatory sub-

population remains largely in the same spatial activity mode

throughout the transient, i.e., units that were initially active

(respectively inactive) tend to remain active (respectively inac-

tive) throughout the relaxation (Figure 6B, red). In contrast, the

inhibitory subpopulation becomes negatively correlated with its

initial pattern after only 60 ms (Figure 6B, blue). In other words,

it is mostly the swift reversal of inhibitory activity that quenches

a growing excitatory transient and pulls the system back to rest.

The amplifying dynamics of excitation and inhibition seen on

the level of transient responses to some initial conditions also

shape the spontaneous background activity in SOCs (Figures

2F and 6D). In the absence of additional stimuli, the rate units

are driven by private noise x(t) (Experimental Procedures), such

that firing rate fluctuations can be observed even in the uncon-

nected case (W = 0) (Figure 6D, gray histogram). The recurrent

SOC connectivity amplifies these unstructured fluctuations by

one-third (Figure 6D, black histogram), because the noise stim-

ulates each of the ai modes evenly, and although some modes

are suppressed by the recurrent dynamics and others are ampli-

fied, the net result is a mild amplification (Figure 3A, black arrow-

head). Furthermore, because only a few activity modes experi-

ence very strong amplification, the resulting distribution of

pairwise correlations among neurons is wide with a small posi-

tive mean (Figure 6E).

SOCs also exhibit an exquisite temporal match between excit-

atory and inhibitory inputs to single units during spontaneous ac-

tivity (Figure 6F). The correlation between these two input

streams averages to �0.66 across units, because any substan-

tial mismatch between recurrent excitatory and inhibitory inputs

is instantly converted into a pattern of activity in which those in-

putsmatch again (cf. Figure 6A). The amplitude of such reactions

is larger than the typical response to noise, so the network is

constantly in a state of detailed excitation/inhibition balance

(Vogels and Abbott, 2009). Furthermore, we have seen that it is

mostly the spatial pattern of inhibitory activity that reverses dur-

ing the course of amplification to restore the balance, whereas

A

B

Figure 5. Generation of Complex Move-

ments through SOC Dynamics

(A) Firing rates versus time for ten neurons of the

SOC, as the system prepares and executes either

of the two target movements (snake, left or but-

terfly, right). Five test trials are shown for each

neuron. The corresponding muscle trajectories

following the go cue are shown for the same five

test trials (thin traces) and compared to the target

movement (black trace and dots).

(B) Same as in (A), for a weakly connected (un-

tuned) random balanced network (Experimental

Procedures).

the excitatory activity is much less

affected (Figure 6B). Thus, during sponta-

neous activity, inhibitory inputs are ex-

pected to lag behind excitatory inputs

by a few milliseconds, which can indeed

be seen in their average cross-correlo-

gram (Figure 6G) and has also been observed experimentally

(Okun and Lampl, 2008; Cafaro and Rieke, 2010).

The small temporal cofluctuations in the firing rates of the

excitatory and inhibitory populations are known to translate

into correlated excitatory and inhibitory inputs to single neurons,

in densely connected circuits (Renart et al., 2010). Here, interest-

ingly, excitatory and inhibitory inputs are correlated more

strongly than expected from the magnitude of such shared pop-

ulation fluctuations. This can be seen by correlating the excit-

atory input stream taken in one unit with the inhibitory input

stream taken in another unit (Figure 6F, bottom row). Such cor-

relations average to �0.26 only (to be compared with �0.66

above; Figure 6G).

Spiking Implementation of a SOC
So far we have described neuronal activity on the level of firing

rates. An important question is whether the dynamical features

of rate-based SOCs are borne out in more realistic models of in-

terconnected spiking neurons. To address this issue, we built a

large-scale model of a SOC composed of 15,000 (12,000

excitatory + 3,000 inhibitory) LIF model neurons. The network

was structured such that each neuron belonged to one of 200

excitatory or 200 inhibitory small neuron subgroups (of size 60

and 15, respectively), whose average momentary activities can

be interpreted as the ‘‘rate variables’’ discussed until here.

In order to keep the network in the asynchronous and irregular

firing regime, the whole network was, in part, randomly and

sparsely connected, similar in this respect to traditional models

(van Vreeswijk and Sompolinsky, 1996; Brunel, 2000; Vogels

et al., 2005; Renart et al., 2010). In addition to those random,

fast synapses, slower synapses were added that reflected the

structured SOC connectivity between subgroups of neurons.

The connectivity pattern between subgroups was given by a

400 3 400 SOC matrix obtained similarly to W in Figure 2. The

value of a matrix element Wij reflected the probability that a

neuron in subgroup j be chosen as a presynaptic partner to

another neuron in group i (Experimental Procedures). Overall,
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the average connection probability between spiking neurons

was 0.2.

The spiking SOC operated in a balanced regime, with large

subthreshold membrane potential fluctuations and occasional

action potential firing (Figure 7A) with realistic rate and interspike

interval statistics (Figure 7C). Spiking events were fully de-

synchronized on the level of the entire population, whose

momentary activity was approximately constant at �6 Hz.

Similar to our rate-based SOCs, the spiking network could be

initialized in any desired activity state through the injection of

specific ramping input currents into each neuron (Figure 7A).

The go cue triggered sudden input withdrawal, resulting in large

and rich transients in the trial-averaged spiking activities of single

cells (Figure 7A, middle), which lasted for about 500 ms, and

occurred reliably despite substantial trial-by-trial spiking vari-

ability in the preparation phase.

The trial-averaged firing rate responses to 27 different initial

conditions, chosen in the same way as in Figure 4, as well as

the diversity of single-cell responses, were qualitatively similar

to the data in Churchland et al. (2012) (Figure 7; Figure S1).

When projected onto the top jPC plane, the population activity

also showed orderly rotations, as it did in our rate SOC

(Figure 7E).

During spontaneous activity, subgroups of neurons in the SOC

display large, slow and graded activity fluctuations (Figure 8A),

which are absent from a control, traditional random network

with equivalent synaptic input statistics (Figure S2; Experimental

Procedures). Moreover, individual pairwise correlations between

subgroup activities in the spiking SOC are accurately predicted

by a linear rate model similar to Equation 1 (Figure 8B). Crucially,

this rate model is nonchaotic, as the matrix that describes con-

nectivity among subgroups has no eigenvalue larger than 1 (by

construction of the SOC). We emphasize that our spiking

network uses deterministic integrate-and-fire neurons without

external noise, so that the spontaneous activity fluctuations

seen in individual subgroups must have been intrinsically

generated, similar to the voltage fluctuations seen in classical

balanced networks (van Vreeswijk and Sompolinsky, 1996;

Renart et al., 2010). This is in contrast to the rate-based model

where fluctuations arose from the amplification of an external

source of noise (Equation 1).

Consistent with the effective rate picture, the distribution

of spike correlations in the SOC (Figure 8C) is wide with a very

small positive mean (r � 0.0027), indicating that cells fire asyn-

chronously. The same is true in the control random network

(r � 0.0005; Renart et al., 2010). However, within SOC sub-

groups, spiking was substantially correlated (Figure 8C, blue; r

� 0.17), and particularly so on the 100 ms timescale, suggesting

that the correlations can be attributed to joint activity fluctuations

of all neurons in a given subgroup. Interestingly thus, in situations

in which the subgroup partitioning would be unknown a priori

A

B

C

D

F

E

G

Figure 6. Precise Balance of Excitation and Inhibition in SOCs

The network is initialized in state a1 (left), a10 (middle), or a100 (right) and runs

freely thereafter. The amplitude of the initial condition is chosen weak enough

for the dynamics of amplification to remain linear (cf. Figure 3).

(A) Temporal evolution of the Pearson correlation coefficient rEI between

the momentary excitatory and inhibitory recurrent inputs across the

population.

(B) Corresponding time course of the correlation coefficients between the

network activity and the initial state, calculated from the activity of the entire

population (black), the excitatory subpopulation (red), and the inhibitory sub-

population (blue).

(C) Temporal evolution of the correlation coefficient between the network

activity when initialized in state ai, where i = 1 (left), 10 (middle), or 100 (right),

and when initialized in a different state aj (j s i, j < 100). Solid lines denote the

average across j, and the dashed flanking lines indicate 1 s. Small values

indicate that the responses to the various initial conditions ai are roughly de-

correlated.

(D) Black: spontaneous fluctuations around baseline rate of a sample unit in the

network. The corresponding rate distribution is shown on the right (black) and

compared to the distribution obtained if the unit were not connected to the rest

of the network (gray). Green: denotes the momentary population average rate,

which fluctuates much less.

(E) Histogram of pairwise correlations between neuronal firing rates estimated

from 100 s of spontaneous activity. The black triangular mark indicates the

mean (�0.014).

(F) Excitatory (red) and inhibitory (blue) inputs taken in the same sample unit

(top) or in a pair of different units (bottom), and normalized to Z scores. The

corresponding Pearson correlation coefficients are indicated above each

combination and computed from 100 s of spontaneous dynamics.

(G) Brown: lagged cross-correlogram of excitatory and inhibitory inputs to

single units, each normalized to Z score (cf. F, top row). The solid line is an

average across all neurons; flanking lines denote ± 1 s. Inhibition lags behind

excitation by a few milliseconds. Cross-correlating the E input into one unit

with the inhibition input into another unit (cf. F, bottom row) yields the black

curve, which is an average over 1,000 randomly chosen such pairs in the SOC.

Neuron

Rich Transients in Stability-Optimized Circuits

1400 Neuron 82, 1394–1406, June 18, 2014 ª2014 Elsevier Inc.



(e.g., in actual experiments), clustering could potentially be per-

formed on the basis of those large correlations (though admit-

tedly they would be measured only rarely) to achieve subgroup

identification. Not surprisingly, membrane potentials followed a

similar pattern of correlations (Figure 8D).

Importantly, the detailed balance prediction made above for

the rate-based scenario (Figures 6F and 6G) remains true on

the level of single cells in the spiking network. Slow excitatory

and inhibitory inputs (corresponding to the structured SOC

recurrent synapses) to single neurons are substantially more

correlated (r � 0.24) than pairs of excitation and inhibition cur-

rents taken from different neurons (r � 0.12; compare red and

black in Figures 8E and 8F). This is not true in the control random

network, in which the balance is merely a reflection of the syn-

chronized fluctuations of the excitatory and inhibitory popula-

tions as a whole.

DISCUSSION

The motor cortex data of Churchland et al. (2012) showcase two

seemingly conflicting characteristics. On the one hand, motor

cortical areas appear to be precisely controllable during

movement preparation, and dynamically stable with firing rates

evolving well below saturation during movement execution. In

most network models, such stability arises from weak recurrent

interactions. On the other hand, the data show rich transient

amplification of specific initial conditions, a phenomenon that re-

quires strong recurrent excitation. To reconcile these opposing

aspects, we introduced and studied the concept of SOCs,

broadly defined as precisely balanced networks with strong

and complex recurrent excitatory pathways. In SOCs, strong

excitation mediates fast activity breakouts following appropriate

input, whereas inhibition keeps track of the activity and acts as a

retracting spring force. In the presence of intricate excitatory

recurrence, inhibition cannot instantaneously quench such

activity growth, leading to transient oscillations as excitation

and inhibition waltz their way back to a stable background state.

This results in spatially and temporally rich firing rate responses,

qualitatively similar to those recorded by Churchland et al.

(2012).

To build SOCs, we used progressive optimal refinement

of the inhibitory synaptic connectivity within a normative, con-

trol-theoretic framework. Our method makes use of recent tech-

niques for stability optimization (Vanbiervliet et al., 2009) and can

inprinciple produceSOCs fromanygiven excitatory connectivity.

In simple terms,we iteratively refinedboth the absence/presence

and the strengths of the inhibitory connections to pull all the un-

stable eigenvalues of the network’s connectivity matrix back

into the stable regime (Figure 2B). Even though we constrained

the procedure to yield plausible network connectivity, notably

one that respects Dale’s law (Dayan and Abbott, 2001, chapter

7), it does not constitute—and is not meant to be—a synaptic

plasticity rule. However, the phenomenology achieved by recent

models of inhibitory synaptic plasticity (Vogels et al., 2011; Luz

and Shamir, 2012; Kullmann et al., 2012) is similar to, although

more crude than, that of ourSOCs. It raises thepossibility that na-

ture solves the problem of network stabilization through a form of

inhibitory plasticity, potentially aided by appropriate pre- and re-

wiring during development (Terauchi and Umemori, 2012).

In a protocol qualitatively similar to the experimental design of

Churchland et al. (2012) (Figure 1), we could generate complex

activity transients by forcing the SOC into one of a few specific

A B C

D E

Figure 7. Transient Dynamics in a Spiking

SOC

(A) The network is initialized in a mixture of its top

two preferred initial states during the preparatory

period. Top: raster plot of spiking activity over 200

trials for three cells (red, green, blue). Middle:

temporal evolution of the trial-averaged activity of

those cells (same color code) and that of the overall

population activity (black). Rate traces were

computed over 1,000 trials and smoothed with a

Gaussian kernel (20 ms width), to reproduce the

analysis of Churchland et al. (2012). Bottom:

sample voltage traceof a randomly chosenneuron.

(B) Fast (black) and slow (brown) synaptic PSPs,

corresponding to random and structured con-

nections in the spiking circuit, respectively.

(C) Distribution of average firing rates (top) and

interspike interval (ISI) coefficients of variation

(bottom) during spontaneous activity.

(D) Trial-averaged firing rate traces for a single

sample cell, when the preparatory input drives the

SOC into one of 27 randommixtures of its first and

second preferred initial conditions. Averages were

computed over 1,000 trials, and smoothed as

described in (A).

(E) First 200 ms of movement-related population

activity, projected onto the top jPC plane. Each

trajectory corresponds to a different initial condi-

tion in (D), using the same color code.

See also Figure S1.
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preparatory states through the delivery of appropriate inputs,

which were then withdrawn to release the network into free

dynamics (Figure 4). Those ‘‘engine dynamics’’ (Shenoy et al.,

2011) could easily be converted into actual muscle trajectories.

Simple linear readouts, with weights optimized through least-

squares regression, were sufficient to produce fast and elabo-

rate two-dimensional movements (Figure 5). Three aspects of

the SOC dynamics make this possible. First, the firing rates

strongly deviate from baseline during the movement period,

effectively increasing the signal-to-noise ratio in the network

response. Second, the transients are multiphasic (Figure 4B),

as opposed to simple rise-and-decay, allowing the readouts

not to overfit on multicurved movements. Third, the preferred

initial conditions of the SOC are converted into activity modes

that are largely nonoverlapping (Figure 6C). Thus, not only is

the system highly excitable from a large set of states, but also

those states produce responses that are distinguishable from

one another, ensuring that different motor commands can be

mapped onto distinct muscle trajectories (Figure 5).

Relation to Balanced Amplification and Relevance to
Sensory Circuits
Transient amplification in SOCs is an extended, more intricate

form of ‘‘balanced amplification,’’ first described by Murphy

and Miller (2009) in a model of V1 synaptic organization. In their

model, small patterns of spatial imbalance between excitation

and inhibition, or ‘‘difference modes,’’ drive large activity tran-

sients in which neighboring excitation and inhibition neurons

fire in unison (‘‘sum modes’’). Due to the absence of a topology

in SOCs, it is impossible to tell which neuron is a neighbor to

which, making sum and difference modes difficult to define.

Nevertheless, they can be understood more broadly as patterns

of average balance and imbalance in the excitatory and inhibitory

synaptic inputs to single cells. With this definition, we showed

here (Figure 6A) that the phenomenology of amplification in

SOCs is similar to balanced amplification, i.e., small stimulations

of difference modes drive large activations of sum modes. This

accounts for the large transient firing rate deflections of individual

neurons that follow appropriate initialization. A key difference be-

tween SOCs and Murphy and Miller’s model of V1 is the

complexity of lateral excitatory connections inSOCs,which gives

rise to temporally rich transients (Figures 3 and 4). Furthermore,

although the ‘‘spring-box’’ analogymay not apply directly to sen-

sory cortices, SOCs (as inhibition-stabilized networks) could still

provide an appropriate conceptual framework for such cortical

areas, as suggested by Ozeki et al. (2009). Likewise, the method

we have used here to build such circuits could prove useful in

finding conditions for inhibitory stabilization of known and

nontrivial excitatory connectivities (see, e.g., Ahmadian et al.,

2013). Finally, although we were able to calculate and rank the

most (or least) amplified initial states analytically only in the linear

regime,we found this rankingwas preserved in themore realistic,

nonlinear model in which neurons can saturate at zero and

maximum firing rates (Figure 3). This is not surprising, as the

onset of amplification after a weak perturbation relies on the con-

nectivity matrix of SOCs being mathematically ‘‘nonnormal,’’

which is a linear property (Ganguli et al., 2008;Murphy andMiller,

2009; Goldman, 2009; Hennequin et al., 2012).

A B

C D

E F

Figure 8. Spontaneous Activity in Spiking SOCs

(A) Top: raster plot of spontaneous spiking activity in the SOC. Only the neu-

rons in the first five subgroups (300 neurons) are shown. Bottom: momentary

activity of the whole population (black) and of the second (green) and third

(magenta) subgroups. Traces were smoothed using a Gaussian kernel of

20 ms width.

(B) Pairwise correlations between instantaneous subgroup firing rates in the

SOC, as empirically measured from a 1,000-s-long simulation (x axis) versus

theoretically predicted from a linear stochasticmodel (y axis). Rate traces were

first smoothed using a Gaussian kernel (20 ms width) as in (A). Distributions of

pairwise correlations are shown at the top, for the SOC (black) and for a control

random network with equivalent synaptic input statistics (brown; Experimental

Procedures).

(C) Distributions of pairwise spike correlations in the SOC (top) and in the

control random network the random network (bottom), between pairs of

neurons belonging to the same subgroup (blue), or to different subgroups.

(black). Spike trains were first convolved with a Gaussian kernel of 100 ms

width. Gray curves were obtained by shuffling the ISIs, thus destroying cor-

relations while preserving the ISI distribution.

(D) Distributions of subthresholdmembrane potential correlations. Colors have

the same meaning as in (C). Voltage traces were cut off at the spike threshold.

Gray curves were obtained by shuffling the time bins independently for each

voltage trace.

(E) Distributions of pairwise correlations between the slow excitatory and

inhibitory currents, taken in the same cells (red) or in pairs of different cells

(black).

(F) Full lagged cross-correlograms between the slow excitatory and inhibitory

currents, taken in the same cells (red) or in pairs of different cells. Thick lines

denote averages over such excitation/inhibition current pairs across the

network, and thin flanking lines denotes ± 1 s. The peak at negative time lag

corresponds to excitation currents leading inhibition currents.

See also Figure S2.
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Relation to Detailed Excitation/Inhibition Balance
SOCsmake a strong prediction regarding how excitation and in-

hibition interact in cortical networks: excitatory and inhibitory

synaptic inputs in single neurons should be temporally corre-

lated in a way that cannot be explained by the activity cofluctua-

tions that occur on the level of the entire population.

During spontaneous activity in SOCs, balanced amplification

of external noise (or intrinsically generated stochasticity, as in

our spiking SOC) results in strongly correlated excitatory/inhibi-

tory inputs in single units. This phenomenon is a recurrent

equivalent to what has been referred to as ‘‘detailed balance’’

in feedforward network models (Vogels and Abbott, 2009;

Vogels et al., 2011; Luz and Shamir, 2012), and it cannot be

attributed here to mere cofluctuations of the overall activity of

excitation and inhibition neurons. Such covariations can be sub-

stantial in balanced networks (Vogels et al., 2005; Kriener et al.,

2008; Murphy and Miller, 2009), but they have been quenched

here by requiring inhibitory synaptic connections to be three

times stronger than excitatory connections on average (Renart

et al., 2010; Hennequin et al., 2012). The residual shared popula-

tion fluctuations accounted for only one-third of the total excita-

tion/inhibition input correlation (Figures 6F and 6G). Thus, the

excess correlation can only be explained by the comparatively

large fluctuations of balanced, zero-mean activity modes (the re-

sponses to the preferred initial conditions of the SOC; Figure 6A).

A certain degree of such excitation/inhibition balance has

been observed in several brain areas, and on levels as different

as trial-averaged excitatory and inhibitory synaptic input con-

ductances in response to sensory stimuli (Wehr and Zador,

2003; Mariño et al., 2005; Froemke et al., 2007; Dorrn et al.,

2010; but see Haider et al., 2013), single-trial synaptic responses

in which the trial-average has been removed (‘‘residuals,’’ Cafaro

and Rieke, 2010), and spontaneous activity (Okun and Lampl,

2008; Cafaro and Rieke, 2010). However, the latter spontaneous

excitatory/inhibitory input fluctuations have been simultaneously

recorded either in the same cell or in different cells, making it

impossible to estimate the contribution of global population

activity fluctuations to the overall excitation/inhibition balance.

Spiking Models of SOCs
The simplicity and analytical tractability of rate models make

them appealing to theoretical studies such as ours. One may

worry, however, that some fundamental aspects of collective dy-

namics are being overseen when spiking events are reduced to

their probabilities of occurrence, i.e., to rate variables. To verify

our results, we embedded a SOC in a standard balanced spiking

network, in which millions of randomly assigned synapses con-

nect two populations of excitatory and inhibitory neurons. The

SOCstructurewasembodiedbyadditional connectionsbetween

subgroups of these neurons, each containing on the order of tens

of spiking cells. The resulting network displayed simultaneous

firing rate and spiking variability (Churchland and Abbott, 2012),

thus phenomenologically similar to the networks of Litwin-Kumar

and Doiron (2012) and Ostojic (2014). However, slow rate fluctu-

ations in SOCs arise from a completely different mechanism. The

sea of randomsynapses in our network induces strong excitatory

and inhibitory inputs to single cells that cancel each other on

average, leaving large subthreshold fluctuations in membrane

potential and therefore irregular spiking whose variability is

mostly ‘‘private’’ to each neuron. This feature is common to all

traditional balanced networkmodels (van Vreeswijk and Sompo-

linsky, 1996;Brunel, 2000; Vogels et al., 2005;Renart et al., 2010).

On the level of subgroups of neurons, this source of variability is

not entirely lost to averaging: although all the cells in a given sub-

group n fire at the same rate rn at any given time, receiver neurons

in another subgroupmwill only ‘‘sense’’ a noisy sample estimate

rn of this rate, because n connects ontom through a finite number

of synapses. Now, because the connectivity between subgroups

is strong, but stabilized, this intrinsic source of noise (the ‘‘resid-

ual’’ xn = rn � rn) is continuously amplified into large, structured

firing rate fluctuations on the level of subgroups. The underlying

mechanism is the same as for the rate model, i.e., balanced

amplification of noise (Murphy andMiller, 2009), with the notable

difference that the noise in the spiking network is intrinsically

generated (the external excitatory drive that each neuron re-

ceives was chosen constant here to make this point).

In order to match the timescale of the rate transients in our

spiking SOC to those in the data of Churchland et al. (2012), we

assumed that the structuredSOC synapses had slower time con-

stants than the random synapses. Functional segregation of fast/

slow synapses in the cortex has been reported in the visual cortex

(Self et al., 2012) and could also be motivated by recent experi-

ments in which the distance from soma along the dendritic arbor

was shown to predict the magnitude of the NMDA component in

the corresponding somatic postsynaptic potentials (PSPs)

(Branco and Häusser, 2011). Thus, distal synapses tend to evoke

slower PSPs than proximal synapses. It is in fact an interesting

and testable prediction of our model that distal synapses are

actively recruited in the motor cortex during movement prepara-

tion and generation. Finally, pilot simulations suggest that this

separation of timescales, although necessary to obtain realisti-

cally long movement-related activity, is not a requirement for

the emergence of large transients, which could indeed be ob-

tainedwith a single synaptic timeconstant of�10ms (not shown).

Conclusions
In summary, we have shown that specific, recurrent inhibition is

a powerful means of stabilizing otherwise unstable, complex

circuits. The resulting networks are collectively excitable and

display rich transient responses to appropriate stimuli that

resemble the activity recorded in the motor cortex (Churchland

et al., 2012) on both single-neuron and populations levels. We

found that SOCs can be used as ‘‘spring-loaded motor engines’’

to generate complicated and reliable movements. The intriguing

parallels to the detailed balance of excitatory and inhibitory in-

puts in cortical neurons, as well as to recent theories that apply

specifically to the visual cortex (Ozeki et al., 2009; Murphy and

Miller, 2009), suggest cortical-wide relevance for this class of

neuronal architectures.

EXPERIMENTAL PROCEDURES

Network Setup and Dynamics

Single-neuron dynamics followed Equation 1, which we integrated using a

standard fourth-order Runge-Kutta method. Following Rajan et al. (2010),

we used the gain function
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gðxÞ=
�
r0 tanh½x=r0� if x<0
ðrmax � r0Þtanh½x=ðrmax � r0Þ� if xR0

(2)

with baseline firing rate r0 = 5 Hz and maximum rate rmax = 100 Hz (Figure 3E).

Unless indicated otherwise, the input I(t) = x(t) + S(t) included a noise term x(t),

which we modeled as an independent Ornstein-Uhlenbeck process for each

neuron, with time constant tx = 50 ms. We set the variance of these processes

to s0
2(t+ tx)/tx, such that, in the limit of very weak synaptic connectivity, the

firing rate of each cell in the network fluctuated around baseline with a stan-

dard deviation s0
2 = 0.2 Hz.

In order to ‘‘prepare’’ the network and drive its activity x into a specific

steady-state pattern ak (Figures 4 and 5), we delivered a slow ramping input

to each cell during ongoing activity. This input was delivered as vector S(t) =

R(t) Pk, where R(t) denotes the ramp activation of the input pool k and Pk are

the projection weights from pool k onto the motor network (Figures 1B and

1C). The ramp R(t) had a slow exponential rise with time constant 400 ms

beginning with the target cue at t =�1 s., followed by a fast exponential decay

with time constant 2 ms after the go cue. The projection weights were set to

Pk =ak �W gðakÞ (3)

in order to guarantee x(t = 0) �ak.

In Figure 4B, the 27 arm reaching movements in Churchland et al. (2012)

were modeled as 27 different initial conditions (b1, ., b27) for the SOC. We

chose each vector bk as a random linear combination of the SOC’s first and

second preferred initial conditions a1 and a2 (see below). More precisely,

bk =
P

c = {1,2} skc zkc ac where the skc’s were random signs and the zkc’s

were drawn uniformly between 0.5 and 1.

Preferred Initial States

To find the preferred initial conditions of the SOC, we restricted ourselves to

the linear regime in which Dri �xi. To quantify the response evoked by some

unit-norm initial condition Dr(t = 0) h a, we defined the ‘‘energy’’ E(a) of the

response as

EðaÞ= 2

t

Z N

0

kDrðtÞk2dt (4)

also assuming that the network dynamics run freely without noise [x(t) = 0].

Here 2/t is a normalizing factor such that E = 1 for an unconnected network

(W = 0), irrespective of the (unit-norm) initial condition a (in which case

kDr(t)k2 = exp(�2t/t)). Because the SOC is linearly stable, E is finite, in the

sense that any initial condition is bound to decay (exponentially) after a suffi-

ciently long period of time.

The ‘‘best’’ input direction is then defined as the initial condition a1 that max-

imizes E(a). By iterating, we can define a collection a1, a2, ., aN of N orthog-

onal input states that each maximize the evoked energy within the subspace

orthogonal to all previous best input directions. In the linear regime, this maxi-

mization can be performed analytically (Supplemental Information). Note that

in the linear regime, E(ak) = E(�ak). In the nonlinear network, this needs not

be the case, and in Figures 3C and 3D we resolved this sign ambiguity by pick-

ing the sign that evoked most energy.

Construction of the SOC Architecture

Random connectivity matrices of size N = 2M, withM positive (excitatory) col-

umns and M negative (inhibitory) columns, were generated as in Hennequin

et al. (2012) with connectivity density p = 0.1. Non-zero excitatory (respectively

inhibitory) weights were set to w0/ON (respectively �gw0/ON), where w0
2 =

2R2/(p(1 � p)(1 + g2)) and R is the desired spectral radius before stability opti-

mization (Rajan and Abbott, 2006).

To generate a SOC, we generated such a random connectivity matrix with

R = 10, producing unstable, deeply chaotic network behavior. After the crea-

tion of the initial W, all excitatory connections remained fixed. To achieve

robust linear stability of the dynamics, we refined the inhibitory synapses to

minimize the ‘‘smoothed spectral abscissa’’ (SSA) of W, a relaxation of the

spectral abscissa (the largest real part in the eigenvalues of W) that—among

other advantages—leads to tractable optimization (Vanbiervliet et al., 2009).

In short, inhibitory weights followed a gradient descent on the SSA subject

to three constraints. First, we kept the inhibitory weights inhibitory, i.e., nega-

tive. Second, we enforced a constant ratio between the average magnitude of

the inhibitory weights, and its excitatory counterpart (g = 3, cf. Discussion).

Third, the density of inhibitory connections was restricted to less than 40%,

to yield realistically sparse connectivity structures. This constrained gradient

descent usually converged within a few hundred iterations. All details can be

found in Supplemental Information.

Analysis of Rotational Dynamics

The plane of projection of Figure 4D was found with jPCA, a dynamical variant

of principal component analysis used to extract low-dimensional rotations

from multidimensional time series (Churchland et al., 2012). Given data of

the form (y(t),dy(t)/dt), jPCA fits (through standard least-squares regression)

a linear oscillatory model of the form dy/dt = Mskew y(t), where Mskew is a

skew-symmetric matrix, therefore one with purely imaginary eigenvalues.

The two leading eigenvectors of the best-fitting Mskew (associated with the

largest conjugate pair of imaginary eigenvalues) define the plane in which

the trajectory rotates most strongly.

Here we computed the jPC projection exactly as prescribed in Churchland

et al. (2012). Ourmodel data consisted of the population responsesDr(t) during

the first 200 ms following the go cue for each of our 27 initial conditions,

sampled in 1 ms time steps. Note that the temporal derivatives are directly

given by Equation 1, except in the spiking network (see below) where we esti-

mated those derivatives using a finite-difference approximation. To make sure

that the jPC projection captures enough of the data variance, that is, that the

observed rotational dynamics (if any) are significant, the data were first pro-

jected down to the top six standard principal components (as in Churchland

et al., 2012).

Muscle Activation through Linear Readouts

In Figure 5, a single pair of muscle readouts was learned from 200 training trials

(100 trials for each of the ‘‘snake’’ and ‘‘butterfly’’ movements). We assumed

the following linear model:

zt = ðm1;m2ÞT Drt +b+ εt (5)

where zt (size 2) denotes the vector of target muscle activations at discrete

time t, Drt is the vector of momentary deviation from baseline firing rate in

the network (size N), and εt is the vector of residual errors (size 2). The readout

weights (column vectors m1 and m2) are parameters that we optimized

through simple least-squares regression, together with a pair of biases b.

The snake (respectively butterfly) target trajectory was made of 58 points

(respectively 26 points), equally spaced in time over 500 ms following the go

cue. Those points defined the discrete time variable t in Equation 5, and the

activity vector Drt was sampled accordingly for each movement.

Spiking Network Simulations

We simulated a network of 15,000 neurons, composed of 12,000 excitatory

and 3,000 inhibitory neurons, divided into 200 subgroups of excitatory neurons

and 200 subgroups of inhibitory neurons, which can be interpreted as the ‘‘rate

units’’ we have focused on until here.

Single-Neuron Model

Single cells were modeled as LIF neurons (e.g., Gerstner and Kistler, 2002,

chapter 4) according to

tm
dV

ðiÞ
m

dt
= � V ðiÞ

m +Vrest + hðiÞ
exc: + h

ðiÞ
inh: + hext: (6)

with tm = 20 ms and Vrest = �70 mV. Neuron i emitted a spike whenever Vm
(i)(t)

crossed �55 mV from below. Following a spike, the voltage was reset

to �60 mV and held constant for an absolute refractory period of 2 ms. The

excitatory and inhibitory synaptic inputs, hexc.
(i) and hinh.

(i), were sums of

alpha-shaped postsynaptic currents (PSCs) of the form c[exp(�t/tdecay) �
exp(�t/trise)], where c is a synapse-type-specific scaling factor that regulates

peak excitatory and inhibitory postsynaptic potential (PSP) amplitudes after
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further membrane integration through Equation (6) (Figure 7B). trise was set to

1 ms, and tdecay depended on the synapse type (see below).

Recurrent Synapses

Each neuron received input from 1,500 excitatory and 1,500 inhibitory network

neurons. For 50% of those recurrent connections (750 excitatory and 750

inhibitory synapses), the presynaptic partner was drawn randomly and uni-

formly from the corresponding population (excitatory or inhibitory), providing

a sea of unspecific, random synapses that was instrumental in maintaining

the network in a regime of asynchronous and irregular firing. These connec-

tions were thought to target proximal dendritic zones and therefore to evoke

fast PSCs (tdecay = 10 ms). The other half of the network synapses were

used to mirror the structure of the network of rate units described throughout

the article and were therefore drawn according to probabilities jointly deter-

mined by (1) the subgroups that the pre- and postsynaptic neurons belonged

to and (2) an optimized SOCmatrixW of size 4003 400 that described the con-

nectivity between subgroups.

We first normalized the excitatory and inhibitory parts for each row ofW, ob-

taining a matrix ŵ of connection probabilities. Then, for any cell i in group m

(1 % m % 400, excitatory or inhibitory), each of 750 excitatory partners were

chosen in two steps: first, a particular group n was picked with probability

ŵmn; and second, a presynaptic neuron was picked at random from this group

n. We applied the same procedure to generate the second half of the inhibitory

synapses (750 per neuron). These structured SOC connections were given a

slower PSC decay time constant (tdecay = 100 ms), and can be interpreted

as targeting more distal dendritic parts.

Sample PSPs are shown in Figure 7B for all four types of synapses. The ratio

between excitatory and inhibitory synaptic efficacies was set to achieve a sta-

ble background firing state of 5 Hz. Note that because of the amplifying

behavior of SOCs and the superlinear nature of the input-output function of

LIF neurons, the network ended up with a mean of 6 Hz instead (Figure 7C).

Each neuron also received a constant positive external input current hext.
that was set to the mean current a cell would receive from 5,000 independent

Poisson sources at 5 Hz with fast synapses. We boiled this input down to its

mean to motivate that the slow, seemingly stochastic rate fluctuations we

observed in the spiking SOC (Figure 8A) did not require any external source

of noise.

Generation of W

SOC matrices for spiking networks were generated in a similar manner as

described above for rate-based networks, except for a few simple variations

to account for the effective gains of the excitatory and inhibitory synaptic path-

ways between subgroups. These details are described in Supplemental

Information.

Control Random Network

The random network used for comparison in Figure 8 was identical in

every respect to the SOC, except that presynaptic partners for slow syn-

apses were drawn completely randomly (there was no notion of neuronal

subgroups).

Simulations were custom-written in OCaml and parallelized onto eight cores

following the strategy developed in Morrison et al. (2005), taking advantage of

a finite axonal propagation delay which we set to 0.5 ms.We used simple Euler

integration of Equation (6) with a time step of 0.1 ms.

SUPPLEMENTAL INFORMATION

Supplemental Information includes Supplemental Experimental Procedures,

two figures, and one movie and can be found with this article online at

http://dx.doi.org/10.1016/j.neuron.2014.04.045.
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Haider, B., Häusser, M., and Carandini, M. (2013). Inhibition dominates

sensory responses in the awake cortex. Nature 493, 97–100.

Hennequin, G., Vogels, T.P., and Gerstner, W. (2012). Non-normal amplifica-

tion in random balanced neuronal networks. Phys. Rev. E Stat. Nonlin. Soft

Matter Phys. 86, 011909.

Hoerzer, G.M., Legenstein, R., and Maass, W. (2014). Emergence of complex

computational structures from chaotic neural networks through reward-modu-

lated Hebbian learning. Cereb. Cortex 24, 677–690.

Kriener, B., Tetzlaff, T., Aertsen, A., Diesmann, M., and Rotter, S. (2008).

Correlations and population dynamics in cortical networks. Neural Comput.

20, 2185–2226.

Neuron

Rich Transients in Stability-Optimized Circuits

Neuron 82, 1394–1406, June 18, 2014 ª2014 Elsevier Inc. 1405

http://dx.doi.org/10.1016/j.neuron.2014.04.045


Kullmann, D.M., Moreau, A.W., Bakiri, Y., and Nicholson, E. (2012). Plasticity of

inhibition. Neuron 75, 951–962.

Laje, R., and Buonomano, D.V. (2013). Robust timing and motor patterns by

taming chaos in recurrent neural networks. Nat. Neurosci. 16, 925–933.

Litwin-Kumar, A., and Doiron, B. (2012). Slow dynamics and high variability

in balanced cortical networks with clustered connections. Nat. Neurosci. 15,

1498–1505.

Luz, Y., and Shamir, M. (2012). Balancing feed-forward excitation and

inhibition via Hebbian inhibitory synaptic plasticity. PLoS Comput. Biol. 8,

e1002334.
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1 Supplemental Figures

target go cue
200 ms

5 Hz

Figure S1, related to Figure 7 of the main text – Diversity of single-cell transient
responses in the spiking SOC. Shown here are trial-averaged responses (1’000 trials) of the
first cell for each of the first 18 subgroups (one panel per subgroup). The preparatory period
drives the network in one of 27 random combinations (color coded) of its top 2 preferred initial
conditions. The color code is meaningless and not consistent across panels, but only intended
to ease visualization. Rate traces were smoothed using a Gaussian kernel of width 20 ms.
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Figure S2, related to Figure 8 of the main text – Control random spiking network.
(a) Top: raster plot of spiking activity in the control network. Middle: average momentary
network activity (black), and activities of the two colored subgroups. Note that the concept
of subgroups is absent from the connectivity; subgroups are completely arbitrary here, and
only meant to provide a comparison with Figure 8 of the main manuscript. Bottom: voltage
traces for two randomly chosen cells. (b) Distribution of average firing rates in the random
network (black) and in the SOC (gray). Averate rates were computed from a 1’000 second-long
simulation. (c) Same as in (b), for the CVs of the ISI distributions.
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2 Supplementary Movie caption

Supplementary Movie The eigenvalues of the original random balanced network are shown
as fixed gray dots in the complex plane. Roughly 50% of them lie to the right of the critical line
defined by Re(λ) = 1 (purple line), thus corresponding to unstable eigenmodes. The moving
dots show the evolution of the eigenvalues as the inhibitory connectivity is being refined to
produce a SOC. Each frame corresponds to one step of the gradient descent (cf. Experimental
Procedures). Purple dots indicate unstable eigenmodes.
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3 Supplemental Experimental Procedures

We present here additional information regarding both the theoretical underpinnings of the
stabilization algorithm we have used to build Stability-Optimized Circuits (SOCs), and all details
of its implementation. We also give a complete description of our spiking network model.

3.1 Preferred initial states

Given a network with connectivity matrix W and network dynamics of the form

τ
dx
dt = −x(t) + W∆r(x, t) + S(t) + ξ(t) (1)

(cf. Equation (1) in the main text), we ask: what initial condition a ≡ ∆r(t = 0) will give rise
to the strongest transient response? How “strong” a transient response is is quantified by the
energy E(a), defined in Equation (4) of the main text, which we repeat here for convenience:

E(a) = 2
τ

∫ ∞
0
‖∆r(t)‖2 dt (2)

We restrict the analysis to the linear regime in which ∆ri ' xi, and we assume that the network
dynamics run freely without noise (ξ(t) = 0) from t = 0 on. In Equation (2), 2/τ is a normalizing
factor such that E(a) = 1 for an unconnected network (W = 0), irrespective of the (unit-norm)
initial condition a (in which case ‖∆r(t)‖2 = exp(−2t/τ)). Since the SOC is linearly stable, E is
finite, in the sense that any initial condition is bound to decay (exponentially) after sufficiently
long periods of time.

The “best” input direction is then defined as the initial condition a1 that maximizes E(a). In
the linear regime, this maximization can be performed analytically. Indeed, Equation (2) can
be rewritten as

E(a) = a>
[2
τ

∫ ∞
0

dt e(W>−I) t/τ e(W−I) t/τ
]

a (3)

≡ a>Q a (4)

where (·)> denotes the matrix transpose. The last equality defines Q as the matrix integral
inside square brackets. Q is a symmetric, positive-definite matrix, so its principal eigenvector is
precisely the initial condition a1 that maximizes the evoked energy, which is then given by the
corresponding principal eigenvalue of Q. In fact, the full eigenbasis of Q, ranked in decreasing
order of the associated eigenvalues, defines a collection (a1,a2, . . . ,aN ) of N orthogonal input
states that each maximize the evoked energy within the subspace orthogonal to all previous
best input directions (cf. Figure 3a in the main manuscript). Again, the eigenvalues are the
corresponding evoked energies. We use this energy formalism again below to explain the optimal
inhibitory stabilization algorithm. Note that in the linear regime, ak and −ak evoke the exact
same energy. In the non-linear network, this needs not be the case, and we resolve this sign
ambiguity by picking the condition that evoked most energy. Note also that Q is the solution
to the Lyapunov equation

(W− I)>Q + Q (W− I) = −2 · I (5)

which is easily solved numerically (Bartels and Stewart, 1972), e.g. using the Matlab function
lyap.
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3.2 Construction of the SOC architecture

Random connectivity matrices of size N = 2M , with M positive (excitatory) columns and M
negative (inhibitory) columns, were generated as in Hennequin et al. (2012) with connectivity
density p = 0.1. Non-zero excitatory (resp. inhibitory) weights were set to w0/

√
N (resp.

−γw0/
√
N), where w0 = R/

√
p(1− p)(1 + γ2)/2 and R is the desired spectral radius (before

stability optimization, Rajan and Abbott (2006)).

To generate a SOC, we generated such a random connectivity matrix with R = 10, producing
unstable, chaotic network behavior. After the creation of the initial W, all excitatory connections
remained fixed. To achieve robust linear stability of the dynamics (i.e. quench chaos), we
refined the inhibitory synapses to minimize the “smoothed spectral abscissa” α̃ε(W), a relaxation
of the spectral abscissa (the largest real part in the eigenvalues of W) that – among other
advantages – leads to tractable optimization (Vanbiervliet et al., 2009). We describe it in more
details below, but in short, the inhibitory weights followed a gradient descent on α̃ε(W), subject
to three constraints. First, we constrained the inhibitory weights to remain inhibitory, i.e.
negative. Second, we enforced a constant ratio between the average magnitude of the inhibitory
weights, and its excitatory counterpart (γ = 3). Third, the density of inhibitory connections
was restricted to less than 40%. This constrained gradient descent usually converged within a
few hundred iterations (cf. also our online Supplemental Movie).

In more technical terms, the smoothed spectral abscissa can be introduced by way of considering,
as above, the energy evoked through linear network dynamics by some initial condition a:

E(W,a) = a>Q(1)a (6)

where Q(s) is defined more generally as

Q(s) = 2
τ

∫ ∞
0

e(W>−sI)t/τ e(W−sI)t/τ dt . (7)

For the network to be stable, the energy in Equation (6) must remain finite for any initial
condition a. Since Q(1) is positive definite, its maximum eigenvalue is smaller than the sum of
its eigenvalues. Thus, for any a, E(W,a) is upper-bounded by the trace of Q(1). Consequently,
if trace [Q(1)] < ε−1 for some given ε > 0, then the energy evoked by any a is less than ε−1, so the
network dynamics of Equation (1) are guaranteed to be stable1. In a network that is not (yet)
linearly stable, we ask: how far must the system be “shifted”, W 7→W− sI (cf. Equation (7)),
for trace [Q(s)] to become smaller than ε−1? The ε-smoothed spectral abscissa answers this
question. Mathematically, α̃ε(W) is the unique root of s 7→ trace [Q(s)] − ε−1, which is a
monotonically decreasing function of s. If the shift s is smaller than the spectral abscissa α(W),
some of the eigenvalues of W− sI will have positive real parts, causing trace [Q(s)] to diverge.
The smoothed spectral abscissa α̃ε(W) is therefore necessarily greater than α(W), which means
that stability can be achieved by minimizing α̃ε(W) instead of α(W). This is an advantageous
replacement as, unlike α, α̃ε is a smooth function of the synaptic weights (Vanbiervliet et al.,
2009).

The tractability of the approach stems from the computability of α̃ε(W) and its derivatives w.r.t
W. For any s > α(W), the matrix Q(s) defined in Equation (7) is known to be the solution to
the following Lyapunov equation

(W− sI)>Q(s) + Q(s) (W− sI) = −2 · I (8)

Solving this equation numerically can be done efficiently (Bartels and Stewart, 1972). Knowing
that trace [Q(s)]−ε−1 is a decreasing function of s, one can apply standard root-finding methods

1globally stable in the linear case, locally stable around background state otherwise
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to identify α̃ε(W). Finally, Vanbiervliet et al. (2009) also provide its derivatives w.r.t the
synaptic weights, needed to perform our gradient-based minimization of α̃ε:

∂ α̃ε(W)
∂W = Q(α̃ε)P(α̃ε)

trace [Q(α̃ε)P(α̃ε)]
(9)

where
P(s) = 2

∫ ∞
0

et(W−sI) et(W−sI)> dt (10)

solves a Lyapunov equation analogous to Equation (8):

(W− sI) P(s) + P(s) (W− sI)> = −2 · I (11)

The iterative constrained gradient descent on α̃ε(W) entails the following steps:

1. Compute the current value of the smoothed spectral abscissa α̃ε(W). This implies multiple
iterations of a numerical root-finding method (e.g. bisection) on s 7→ trace[Q(s)] − ε−1.
The main cost here is to solve Equation (8) for Q(s) numerically, but we show below that
the present step can in fact be bypassed.

2. Solve Equation (8) and Equation (11) with s = α̃ε found in step 1. This gives matrices
Q(α̃ε) and P(α̃ε), which must be multiplied to form the desired gradient (Equation (9)).

3. Move the inhibitory weights by a small amount in the direction of the negative gradient.
That is, for every existing inhibitory synapse Wij (only 40% of all possible inhibitory
connections exist at any given time, see step 6), set Wij ← Wij − η [∂α̃ε/∂W]ij . Here
η = 10 is a learning rate.

4. Enforce the negativity constraint (inhibitory weights remain inhibitory), by clipping all
positive inhibitory weights to zero

5. Enforce the constraint that inhibition must be γ = 3 times stronger than excitation on
average. This is done by writing the connectivity matrix W block-wise as

W =
(

WE→E WI→E

WE→I WI→I

)
, (12)

and multiplicatively rescaling both inhibitory blocks by−γWE→E
/WI→E and−γWE→I

/WI→I

respectively, where WX→Y denotes the average over all matrix elements. This step is not
necessary for stability optimization, but is essential to make sure that the high correlation
of excitatory and inhibitory input currents that emerges from optimization is not over-
whelmed by the baseline correlation contributed by shared population fluctuations (see
Discussion in the main text, and Renart et al. (2010); Hennequin et al. (2012)).

6. Enforce the maximum density of inhibitory connections, by removing any existing Wij that
step 4 may have set to zero, and replacing it by a new connection Wik (which does not
exist yet) where the presynaptic inhibitory neuron k is chosen randomly. Set the strength
of these new connections to zero initially. Again, this constraint is not strictly required,
but adds to the biological plausibility of the resulting connectivity. Note that this step
ensures that the number of “existing” inhibitory synapses per neuron is left unchanged.
The desired number of allowed synapses must therefore be decided before starting this
iterative procedure; here we “tag” 40% of all inhibitory synapses as “existing”, picking
the 10% of non-zero synapses that are already present in the initial chaotic network and
completing the remaining 30% with randomly chosen synapses, whose weights are initially
set to zero.

Steps 1 through 6 are then repeated until convergence of the spectral abscissa (Supplemental
Movie).
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Choice of ε In this procedure, ε modulates the distance between the spectral abscissa α
and its upper bound α̃ε: if ε is decreased, α̃ε becomes a tighter upper bound to the spectral
abscissa. In pilot studies, we realized that stability could be reached much faster if ε was set
to decrease progressively during the course of the gradient descent. Empirically, it seemed a
good idea to keep the ratio α̃ε/α constant, and to adjust ε in every iteration to meet this need.
Mathematically, this means that the cost function (W 7→ α̃ε(W)) keeps moving, but it becomes
a progressively tighter upper bound on α, and crucially, we no longer need to compute α̃ε in
step 1! We thus capitalized on this observation and set α̃ε(W) = Cα(W) in every iteration,
with C = 1.5, empirically found to be a good choice. Note that this automatically constrains
ε to a value of 1/trace[Q(Cα)], where Q(·) is defined in Equation (7). Steps 2 to 6 are then
performed as prescribed above. Note that computationally, the cost is still of order N3, but the
large multiplicative constant implied by the iterative root-finding method of Step 1 is eliminated.
Note also that Step 2 requires solving Equation (8) and Equation (11), for which we need to
compute a Schur decomposition of W only once (Bartels and Stewart, 1972). As a byproduct,
the Schur decomposition also returns the spectral abscissa at no further cost, so α needs not
be computed separately. The above simplified procedure is very effective, except for one small
detail. As α̃ε gets closer to α (which is bound to happen as learning progresses, since α̃ε = Cα
and α̃ε decreases), it also becomes increasingly non-smooth as a function of W. For its gradient
to remain well-behaved, we therefore kept α̃ε some safe margin away from α, by setting α̃ε to
Cα or α+B in every iteration, whichever was the greatest. We used B = 0.2.

3.3 Generation of SOC matrices for spiking networks

SOC matrices for spiking networks were generated in a similar manner as described above for
rate-based networks, except for a few simple variations to account for the effective gains of
the excitatory and inhibitory synaptic pathways between subgroups. To calculate these gains,
we isolated two subgroups of spiking neurons, n (sender) and m (receiver), and assumed (self-
consistently) that the rest of the network fired with Poisson statistics at 5 Hz. We then nu-
merically estimated the effect of small firing rate deviations in group n, ∆n, on the firing rate
response ∆m of the receiver (thus linearizing the joint dynamics of subgroups around the back-
ground state). Due do the E/I balance, this is a roughly linear function of the connection
probability Ŵmn from group n to group m:

d∆m

d∆n
'
{
βexc. Ŵmn if n is excitatory
βinh. Ŵmn if n is inhibitory

(13)

Using a simple least-squares fit, we extracted the coefficients of proportionality βexc. ' 5.2 and
βinh. ' −21.9. These constants were then used to rescale the excitatory and inhibitory parts of
the normalized matrix of connection probabilities, Ŵ, yielding an effective connectivity matrix
W such that linear dynamics of the form

τ
d∆r
dt = −∆r + W∆r + noise (14)

approximated the joint dynamics of our spiking subgroups (which is shown in Figure 8b of the
main manuscript). This suggests that the threshold process of spiking in combination with the
finite size of the randomly connected subgroups leads to apparent stochasticity that can, to a
high degree of accuracy, be treated as noise around an effective population rate of each subgroup
(see also Brunel (2000)).

We used the smoothed spectral abscissa method described above to modify the connections
probabilities Ŵmn (200 < n ≤ 400) that involved inhibitory presynaptic subgroups to achieve
stability in an initially unstable, random sparse matrix. In each gradient step, the inhibitory
part of each row of Ŵ was re-normalized to sum to 1, to preserve the probabilistic interpretation
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of Ŵ. Second, we used a straightforward application of the chain rule to propagate the gradient
of the smoothed spectral abscissa of W to Ŵ given the value of βinh..

We used the effective weight matrix W to compute the preferred initial states of the spiking
SOC, akin to the rate-based case with ∆ri ∝ xi (i.e. assuming linear dynamics among subgroups
given by Equation (14)). During the preparatory period, each LIF neuron received a ramping
input current that depended only on the subgroup it belonged to.
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