Chapter 3

A Theoretical Framework for the Dynamics
of Multiple Intrinsic Oscillators in Single
Neurons

Michiel W.H. Remme, Mité Lengyel, and Boris S. Gutkin

Abstract The dendritic tree contributes significantly to the elementary
computations a neuron performs while converting its synaptic inputs into action
potential output. Traditionally, these computations have been characterized as both
temporally and spatially localized. Under this account, neurons compute near-
instantaneous mappings from their current input to their current output, brought
about by somatic summation of dendritic contributions that are generated in
functionally segregated compartments. However, recent evidence about the presence
of oscillations in dendrites suggests a qualitatively different mode of operation: the
instantaneous phase of such oscillations can depend on a long history of inputs, and,
under appropriate conditions, even dendritic oscillators that are remote may interact
through synchronization. Here, we develop a mathematical framework to analyze
the interactions of local dendritic oscillations, and the way these interactions influ-
ence single cell computations. Combining weakly coupled oscillator methods with
cable theoretic arguments, we derive phase-locking states for multiple oscillating
dendritic compartments. We characterize how the phase-locking properties depend
on key parameters of the oscillating dendrite: the electrotonic properties of the
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(active) dendritic segment, and the intrinsic properties of the dendritic oscillators.
As a direct consequence, we show how input to the dendrites can modulate
phase-locking behavior and hence global dendritic coherence. In turn, dendritic
coherence is able to gate the integration and propagation of synaptic signals to
the soma, ultimately leading to an effective control of somatic spike generation.
Our results suggest that dendritic oscillations enable the dendritic tree to operate
on more global temporal and spatial scales than previously thought; notably that
local dendritic activity may be a mechanism for generating on-going whole-cell
voltage oscillations.

1 Introduction

The dendritic tree contributes significantly to the elementary computations a neuron
can perform, both by its intricate morphology and its composition of voltage-
gated ionic conductances (Stuart et al. 2007). Such active conductances can
underlie a wide variety of dynamical behaviors such as ongoing oscillations of the
dendritic membrane potential, both sub- and supra-threshold. Membrane potential
oscillations have been demonstrated in various types of neurons. Prominent intrinsic
subthreshold oscillations have been found in stellate cells from entorhinal cortex
layer 2 (Alonso and Llinds 1989; Alonso and Klink 1993), neurons from the frontal
cortex (Gutfreund et al. 1995), neurons from the amygdala complex (Pape et al.
1998; Sanhueza and Bacigalupo 2005), and pyramidal cells and interneurons from
the hippocampal CA1 area (Leung and Yim 1991; Chapman and Lacaille 1999).
Although these membrane potential oscillations are normally recorded at the
soma and thus are considered to be of somatic origin, several lines of evidence
suggest dendritic loci of generation. First, many of the conductances thought to
underlie the generation of such oscillations reside predominantly in the dendrites,
sometimes specifically in the distal parts of the dendritic tree. For example, in
the apical dendrites of hippocampal CAl pyramidal neurons, the density of Iy
increases strongly with distance from the soma (Magee 1998), and reaches very
high values in the thin distal branches (Lorincz et al. 2002). Second, several
studies have suggested the existence of clusters of ionic conductances that are
responsible for the generation of dendritic spikes (Llinds and Sugimori 1980).
While most of the direct electrophysiological evidence regards excitable behavior,
demonstrating the generation of dendritic spikes in response to sufficient levels of
depolarization, mathematical analysis has shown that neural membranes exhibiting
excitability can readily pass to oscillatory regimes in an input-dependent manner
(e.g., see Rinzel and Ermentrout 1998). Third, in several cases, oscillations have
been directly recorded in dendrites. For example, recordings from hippocam-
pal CAl pyramidal neurons have demonstrated ongoing oscillations in the den-
drites that include repetitive dendritic spikes, presumably involving Ca?>* currents
(Kamondi et al. 1998). Furthermore, significant intrinsic dendritic oscillations
have been observed in several neuronal preparations that depended on the inter-
play between the nonlinear properties of NMDA synaptic receptors and intrinsic
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voltage-dependent currents (Moore et al. 1999; Placantonakis and Welsh 2001).
Crucially, while the onset of these oscillations was conditional on the activation
of the NMDA synapses, the oscillations themselves were produced by mechanisms
that were intrinsic to the postsynaptic cell and not by periodically structured synaptic
inputs. Since NMDA receptors are largely localized on dendritic spines, and are
hence electrotonically removed from the soma, these data may also argue for
a nonuniform and local dendritic generation of membrane potential oscillations.
Taken together, these experimental results suggest that dendritic trees can function
as oscillators, perhaps conditional on the level of background depolarization or
the presence of neuromodulators (Yoshida and Alonso 2007), while leaving open
the question whether global cell-wide voltage oscillations could result from local
dendritic mechanisms that are intrinsic even to distal dendrites and hence perhaps
only weakly coupled to the soma electrotonically.

Indeed, multiple intrinsic dendritic oscillators have been proposed to underlie
the recently discovered intricate firing pattern of entorhinal grid cells (O’Keefe and
Burgess 2005; Burgess et al. 2007; Giocomo et al. 2007). This influential model
suggests that the functional responses of entorhinal neurons recorded in behaving
animals are a direct consequence of the generation of independent oscillations that
are intrinsic to individual dendrites. Hence, this model presupposes the existence of
multiple oscillators that are integrated at the soma, leading to the questions of how
such dendritic oscillators may interact with the soma and with each other, and what
sorts of collective behaviors the electrotonic structure of the dendritic tree might
impose on the oscillations.

Here, we focus on the dynamics of such interacting oscillators and their impact
on signal propagation in single neurons, using mathematical analysis corroborated
by numerical simulations of biophysical models. We treat the dendritic tree of a
neuron as a network of oscillators coupled by stretches of relatively less active cable.
This prompts us to combine two analytical methods: weakly coupled oscillator
theory and cable theory. The theory of weakly coupled oscillators has been
extensively used previously to study synchronization of multiple oscillators residing
in separate cells interacting through synapses or gap junctions (Izhikevich 2007). In
this framework, the response of oscillators to perturbations is described by their
infinitesimal phase response curves. This greatly simplifies this complex dynamical
system and allows for an analytical treatment of the phase-locking behavior of
the coupled oscillators. Since we focus on intradendritic oscillators, which are
continuously coupled via the membrane voltage, we use cable theory (Rall 1967)
to compute the perturbations via which the oscillators interact.

Part of the results of this chapter have been published in Remme et al. (2009).

2 Methods

We first develop a theory for the behavior of a dendritic tree that contains multiple
intrinsic oscillators and then use this framework to gain understanding of how such a
tree would behave dynamically and hence control the neuron’s output depending on
the input. In order to develop the mathematical framework, we begin by considering
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Fig. 3.1 Minimal system of two oscillators coupled via a dendritic cable. (a) The oscillators with
voltage trajectories Va(¢) and Vg(¢) and phase difference ¢ determine the membrane potential at
the ends of a cable with electrotonic length L. (b) Example of a phase response function Z A (64)
giving the phase shift of oscillator A as a perturbation at phase 64. (¢) The stable phase-locked
solution is determined by ¢ = 0 and %(ﬁ < 0 and is either at ¢ = 0 (e.g. for the solid curve) or
at ¢ = 7 (e.g. for the dash-dotted curve)

a minimal setup of two cable-coupled oscillators. As we will see, even this setup is
too complicated for direct analytical treatment; hence, we will go through a number
of reduction steps which we sketch out below.

We study the behavior of a system of two oscillators with period 7" being
connected via an active (though not intrinsically oscillating) dendritic cable with
length constant A and membrane time constant t. The cable also expresses a
voltage-dependent conductance with a gating variable m(x,?) with activation
function m (V') and time constant t,,, (in milliseconds). The equations governing
the membrane potential V(x,?) and the gating variable m(x, ) along the cable
(excluding the oscillators) are

tiV(x, t) = Aza—zV(x, t)— (V(x,t) — EL) — ymm(x,t) (V(x,t) — En)
ot dx2

rm%m(x, t) =meo(V(x,t)) —m(x,t), 3.1

where Ep is the leak reversal potential, Ey, is the reversal potential of the active
current, and Yy, is the ratio of the maximal conductance of the active current to the
leak conductance. The two oscillators A and B are located at the ends of the cable
at x = 0 and x = [, separated by an electrotonic distance L = [ /A (Fig.3.1a). The
two oscillators form the periodically forced end conditions of the cable:

V(0,7) = Va(),
V(l.1) = Va(t) (3.2)

with Va(¢) and Vg(¢) being the voltage traces of the two oscillators A and B that
evolve according to

Cm%VA(t) = _gL(VA(t) - EL) - IA(VA(I),mA(t)) — SPA(f),

Cm%VB(t) = —gL(VB(t) — EL) — Ig(Va(t),mp(t)) — € pp(?), (3.3)
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where C, is the membrane capacitance (in WF/cm?), g is the leak conductance
(in mS/cm?), I g(t) summarizes the voltage-dependent membrane currents gener-
ating the oscillations with the vector of gating variables ma g(#) given by standard
kinetic equations. The terms & pa (f) describe the perturbing currents that each
oscillator receives from the cable and are proportional to %V(O, t) and %V(Z ,1).
In the weak coupling framework ¢ is typically a small parameter, implying that
the currents in the stretch of cell membrane that generate the intrinsic oscillations
are much stronger than the perturbing currents that arrive from the dendritic cable,
hence, |¢ pas(t)|/1gL(Vap(t) — EL) + Iap(?)] < 1. For a cable with diameter
d (in cm) and oscillators that are described as a single isopotential compartment
with membrane surface area A (in cm?), we have ¢ = d? /4R; A, where R; is the
intracellular resistivity of the dendritic cable (in k§2 cm).

The two oscillators described by (3.3) form the boundary conditions (3.2) for
the cable (3.1). In turn, the cable yields the current flux through its ends into
(and thereby perturbing) the two oscillators: the terms € pa g(¢) in (3.3). It is clear
that it is next to impossible to solve (3.1)—(3.3) directly. However, we will use a
number of reductions to arrive at a phase description of the system that is simple
enough to handle analytically. This allows us to derive interaction functions for the
two oscillators, describing how much they perturb each other through the dendrite
depending on their phases. We then use these interaction functions to determine the
stable phase relationship between the oscillators for different parameters, i.e., the
properties of the cable and the type of oscillators (see for similar approaches Crook
et al. 1998; Bressloff 1999; Goldberg et al. 2006).

We begin by observing that the oscillators from (3.3) can be reduced to a phase
description (Izhikevich 2007). The phases 64 and 6g (in radians) describe the state
of each oscillator. The dynamics of the phases are then described by

. 27
O = T + e Za(t) pa(t),

Og = ZTJT+8ZB(Z)pB(I). 3.4
Here, the first term in the right hand side of each equation is the natural frequency of
each oscillator and the second term describes the interaction between the oscillators.
The crux of the analysis is thus to derive this function which we do explicitly in
Appendix.

The interaction between the two oscillators depends on two factors: the intrinsic
properties of the oscillators, as reflected by their infinitesimal phase response
curves Za p(t), and the perturbations pa g(¢) to each oscillator via the cable. The
infinitesimal phase response curve of an oscillator describes the phase shift induced
by a perturbation delivered at a given phase (Fig. 3.1b). It can be determined using
standard methods (Izhikevich 2007). The perturbations to the oscillators come from
solving (3.1) with the oscillators described by (3.3) as the boundary conditions
described by (3.2). For the active cable, this task can be greatly simplified if we
consider a quasi-active approximation of the cable, and if we realize that the cable
should behave periodically. The former can be done by linearizing the cable (3.1)
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about the voltage to which the cable would relax if it was not driven by the oscillators
(Sabah and Leibovic 1969; Koch 1984). Under such approximations, the active
properties of the dendritic cable can be summarized by a single parameter, i, which
can be derived from its basic biophysical properties (see Appendix). The sign of u
indicates whether the active conductance that is present in the cable is regenerative
(n < 0), restorative (i > 0), or passive (1 = 0) (see also Goldberg et al. 2006).
A regenerative current will amplify perturbations (e.g., a persistent sodium current
Inap), While a restorative current actively counteracts such perturbations (e.g., the
hyperpolarization activated inward current I},).

Since the solution to the cable equation with periodically forced end conditions
is also periodic, it depends only on the difference of the phases of the two oscillators
¢ = 0g(t)—0Oa(t). The dynamics of ¢ is the central object of our interest. Assuming
that the oscillator interactions via the cable are relatively weak, we can obtain the
interaction functions Hx (¢) and Hg(¢) (see Izhikevich 2007 and Appendix). These
describe the change in the oscillators’ phases as a function of the phase difference
(Fig.3.1c). Now the phase difference between the oscillators evolves, on a slower
timescale, as

¢ = ¢ (Hp(¢) — Ha(9)) (3.5)

It is easy to see that phase-locked states for our dendrite can be identified as values
of ¢ where ¢ = 0. The derivative of ¢ with respect to ¢ gives the stability of such
states (negative implies stable, positive unstable).

3 Results

3.1 Phase-Locking Dynamics of Specific Oscillator Models

The interaction functions and hence the phase-locking dynamics depend critically
on the biophysics of the oscillators considered. We now turn to illustrating our
analysis for two different oscillator types: one that generates action potentials and
the other a model for subthreshold oscillations.

As a first example we analyze the phase-locking for the type II Morris—Lecar
neural oscillator (Morris and Lecar 1981). The voltage trace and the phase response
function of this oscillator are plotted in Fig. 3.2a for one oscillation cycle, starting at
the peak of the voltage trace. With this, we can compute the bifurcation diagram
and determine the stable and unstable phase-locked solutions as a function of
the electrotonic distance L, one key parameter in determining the phase-locking
dynamics (Fig. 3.2b). The dendrite shows a bistable region where both the in-phase
and the antiphase solution are stable (around L ~ 1.65). For smaller L, the in-phase
solution is stable. As the electrotonic separation between the oscillators approaches
L = 4, there is also a sharp transition from a stable anti-phase to a stable in-phase
solution.
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Fig. 3.2 Phase-locking of two Morris—Lecar type II oscillators. (a) Voltage trajectory (dashed
line) and phase response function (solid line) of the Morris—Lecar type II oscillator with period
T = 21 ms. (b) Bifurcation diagram showing the stable (solid black line) and unstable (dashed
gray line) phase-locked solutions as a function of L. Cross marks give the stable phase difference
determined with numerical simulations. (¢) The middle two panels show simulations of the phase
difference dynamics for L = 1.1 (fop) and L = 2.1 (bottom). Space-time plots of the membrane
potential along the dendritic cable are plotted for the first 200 ms (left) and for the final 200 ms
(right) of the two simulations

Using numerical simulations of (3.1)—(3.3), we can demonstrate the dynamics
of the phase difference between the two Morris—Lecar oscillators, as well as
the membrane potential dynamics along the cable. Figure 3.2c illustrates these
dynamics when the oscillators are separated by an electrotonic distance of L = 1.1
(top panels) or L = 2.1 (bottom panels). The oscillators start out with a phase
difference of ¢ = 2m/3. As expected from the bifurcation diagram in Fig. 3.2b,
the two oscillators move to the in-phase configuration ¢ = 0 when L = 1.1,
synchronizing the voltage oscillations along the cable. When L = 2.1 the two
oscillators settle in the antiphase solution ¢ = 7, producing large voltage gradients
along the cable.

As a second example, we determine the phase locking for a model of sub-
threshold oscillations in entorhinal stellate cells under both passive and active cable
coupling. These oscillations are thought to arise from an interaction between a
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Fig. 3.3 Phase locking behavior of subthreshold oscillators. The oscillations are generated by
interactions between Iy,p and [, (see Appendix). (a) Voltage trajectory (solid line) and phase
response function (dashed line) of the oscillator. (b) Bifurcation diagrams showing the stable (solid
black lines) and unstable (dashed gray lines) phase-locked solutions as a function of L for a passive
cable (fop), a cable with a regenerative current (middle), and a cable with a restorative current
(bottom). The restorative current /;, and regenerative current Iy,p are inserted in the cable using,
respectively, u = —1.35, yp = 1.1 and t, = 1 ms, and © = 0.84, yp = 1.21 and 7, = 52.3 ms.
Cross marks in the bifurcation diagrams give the stable phase difference determined with numerical
simulations of the nonlinear system

persistent sodium current Inp and a hyperpolarization-activated inward current Iy,
(see Appendix). Both the voltage trajectory and the phase response function are
close to a sinusoid (Fig. 3.3a). The bifurcation diagrams (Fig. 3.3b) are shown for
two oscillators coupled via a passive cable (top), a cable with a regenerative current
(middle), and a cable with a restorative current (bottom). The regenerative current
makes the transition between in-phase and antiphase solutions to occur for smaller
L, compared to passive cable coupling. In contrast, adding the restorative current to
the cable causes the transition to occur at larger L, making the synchronous phase-
locked solution stable up to L ~ 3.8.

Numerical simulations of (3.1)—(3.3) agree very well with the theoretical pre-
dictions of the phase-locking, both for the type I Morris-Lecar oscillators (Fig. 3.2)
and the subthreshold oscillators (Fig. 3.3), when using the maximal ¢ that still allows
for oscillations. Larger values of ¢ lead to such strong interaction currents that
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the oscillations are annihilated. Numerical simulations of (3.1)—(3.3) using voltage-
dependent cable currents match exactly with the predictions of the weak coupling
analysis (bottom two panels in Fig. 3.3b), thereby also emphasizing the validity of
using linearized descriptions of those active currents in our analytical framework.

3.2  Multiple Oscillators: Chains and Branched Structures

So far, we have focused on a minimal configuration of two oscillators connected by
a cable. However, our analysis can be easily extended to predict phase locking of
a chain of oscillators. This follows since the phase-locking behavior only depends
on each neighboring pair of oscillators. Figure 3.4a shows numerical simulations
of a chain of three oscillators, using the same Morris—Lecar model as in Fig. 3.2.
The two pairs are separated by a passive dendritic cable of either L = 1.1 (top
panel) or L = 2.1 (bottom panel). The phase-locked solutions follow from the
bifurcation diagram in Fig. 3.2b: the three oscillators move into an in-phase solution
for L = 1.1, whereas for L = 2.1 each neighboring pair of oscillators moves into
the anti-phase solution.

Our framework also allows us to understand phase locking in a branched cable
structure. Hence, we examined the phase difference dynamics of a triangular
configuration of three Morris—Lecar oscillators (Fig.3.4b). In this situation, each
oscillator is separated from the other two oscillators by a passive dendritic cable with
electrotonic length L = 1.1 (top panel) or L = 2.1 (bottom panel). For L = 1.1,
all three oscillators synchronize. When L = 2.1, we expect from the bifurcation
diagram in Fig. 3.2c that the oscillators go into antiphase. However, as we have three
mutually coupled oscillators, two pairs of antiphase locked oscillators would lead
to an in-phase configuration of the final pair of oscillators. The bifurcation diagram
shows that the in-phase configuration is unstable. We see from the simulation that
the system settles into the solution closest to the antiphase solution, which is a phase
difference of 27t /3 between each pair of oscillators.

3.3 Dendritic Phase-Locked States: Controlled by Inputs
and Read Out with Spikes

Above, we developed a framework for analyzing the behavior of local oscillators
embedded in the dendritic tree. Now we turn to the question of how such oscillating
dendrites respond to inputs and impact the output of the neuron. We will show
that the external synaptic input can control the phase-locked configuration of the
dendritic oscillators and that this phase-locked configuration can then be transmitted
through patterning of the cell’s action potentials. We give several salient illustrative
examples using a model with a branched oscillating dendritic tree and a spike-
generating soma. The model consists of a passive branching dendritic compartment
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Fig. 3.4 Phase difference dynamics of three oscillators in a chain or a branched configuration. The
Morris-Lecar type II oscillators are separated by a passive cable. Panels (a) and (b) show from left
to right: a scheme of the model with below it the membrane potential of the oscillators at the start
of the simulation; the dynamics of the phase difference ¢ between the oscillators for L = 1.1 (top)
and L = 2.1 (bottom); and the membrane potential of the oscillators at the end of the simulation.
The properties of the Morris-Lecar oscillators and the dendritic cable are as in Fig. 3.2

with two Morris—Lecar type II oscillators at its two distal ends and an excitable soma
that, for simplicity, we describe with an integrate and fire mechanism (Fig. 3.5a).

Above, we showed that the dendritic tree can be in a phase-locking regime
where two stable phase-locked states coexist (see Fig.3.2b). In such a bistable
regime, well-timed inputs to one or more dendritic oscillators can switch the locking
between in-phase and anti-phase. Clearly, the membrane potential fluctuations at the
soma depend on whether the dendritic oscillators are synchronized or not. In our
model, they are largest in amplitude when the dendritic oscillators are in-phase. The
soma can show this difference with its spiking pattern when such large amplitude
fluctuations are supra-threshold, while smaller fluctuations (e.g., with asynchronous
oscillators) are not.
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Fig. 3.5 Changing the phase-locked solution of dendritic oscillators with external input and
detection of the phase-locked state with an excitable soma. (a) Schematic drawing showing the
configuration of two dendritic Morris-Lecar type II oscillators and a spike-generating soma. All
are separated by a passive cable with electrotonic length L = 1.65 and r = 20 ms. (b) From
top to bottom are shown the inputs to the two dendritic oscillators, the phase difference dynamics
(solid black line) and somatic firing rate (dashed gray line), and the somatic membrane potential
Vi (solid line) with the spike threshold (dotted line). Note that the spikes have been cut off in order
to show the subthreshold membrane potential. (c—d) Bifurcation diagrams describing the phase-
locked solutions up to ¢t = 65 (C, see also Fig.3.2b) and after 1 = 65 (D) with dotted line at
L = 1.65 giving the electrotonic distance between the dendritic oscillators

In Fig.3.5, we illustrate the above mechanism. The initial parameters are
such that both the in-phase and antiphase state of the dendritic oscillators are
stable (vertical dotted line in Fig.3.5c). Oscillators starting from an initial phase
difference ¢ = m/4 move into the synchronous phase-locked state (solid black
line in Fig. 3.5b, top panel). This consequently leads to repetitive somatic spiking
(Fig. 3.5b, top panel shows firing rate and bottom panel shows zooms of somatic
voltage). A brief depolarizing current pulse to one of the oscillators moves them into
the antisynchronous state and the somatic spiking ceases. A subsequent synchronous
current pulse to both dendritic oscillators can switch them back into the synchronous
state and hence restart the spiking. Note that all the stimuli here are excitatory, yet
depending on their timing, they can have a net excitatory or inhibitory effects on the
cell’s spiking.
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Another mechanism by which inputs to the dendrites can affect the phase-locked
state is by changing the input amplitude and thereby the oscillator frequency. In
Fig.3.5b at time = 6's we increase the amplitude of the current input impinging
on the oscillators which causes the system to move out of the bistable regime.
The synchronized state loses stability and the oscillators gradually move into anti-
phase locking. As a result, the soma stops spiking (at time # ~ 17s). Note that the
electrotonic separation between the oscillators remains constant (vertical dotted line
in Fig. 3.5d) but that the bifurcation diagram itself changes. In turn, a decrease in the
excitatory input would reinstate spiking. Hence, this mechanism allows the cell to
encode an inverse of the input amplitude, or the inverse of the excitatory input rate.

4 Discussion

We studied the dynamics of dendrites that show intrinsic oscillations due to
active voltage-dependent currents that present strong spatial inhomogeneities, hence
leading to discrete oscillatory segments. We developed an analytical framework to
describe and understand the behavior of interacting dendritic oscillators and their
impact on signal propagation within a neuron. A major focus was to understand
when the oscillators within the dendrite would lock and hence the whole dendritic
tree would act as a single oscillatory unit.

Using the weakly coupled oscillator framework, we have identified the re-
quirements for the various phase-locking regimes of the dendritic oscillators. A
central parameter determining the phase-locked solutions is the electrotonic distance
between the oscillators. This distance determines how strongly the dendritic cable
filters the interactions between the oscillators. In particular, dendritic coupling
introduces a delay in the oscillator interactions. The time it takes for the state of
one oscillator to perturb another oscillator increase with electrotonic distance, and
thereby effectively shifts the phase response function (see also Goldberg et al. 2006).
For tightly coupled oscillators, the synchronous solution is stable, and the antiphase
solution is unstable. However, at a certain electrotonic distance, the phase response
functions of the oscillators are shifted in time such that the synchronous solution
loses stability and the antiphase solution becomes stable. Hence, the phase locking
of oscillators alternates between synchronized solutions and anti-phase solutions as
a function of the electrotonic distance.

The analysis also reveals how the phase-locking is affected by the presence of
voltage-dependent conductances in the cable connecting the oscillators. Using the
quasi-active approximation of the cable (Sabah and Leibovic 1969; Koch 1984),
we find that the dependence of the stable phase-locked solution on the electrotonic
distance is amplified by regenerative conductances (i.e., ionic conductances that am-
plify a voltage perturbation), whereas it is counteracted by restorative conductances
(i.e., ionic conductances that counteract voltage perturbations) (see also Goldberg
et al. 2006). It should be noted that the linearization of the active conductances in
the dendrites is appropriate for small amplitude oscillations in the dendrite and is
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therefore in general a better approximation for subthreshold oscillations than for
spiking oscillators. The effects of active conductances in the connecting cable are
explored in more detail in Remme et al. (2009), where we show that the above
results hold in general.

The mathematical approach that we used, builds on several studies which focused
on the interaction between two neurons with repetitively spiking somata that interact
via inputs at the dendrites (Crook et al. 1998; Bressloff 1999; Goldberg et al.
2006). A crucial difference with these studies is that rather than coupling via
discrete synaptic events, we treat continuous coupling between the oscillators via
the current-conducting cables. One consequence of the continuous coupling is
that one needs both the phase response function and the voltage trajectory of the
oscillators in order to compute the interaction functions and ultimately the phase-
locked solutions. Both the voltage trajectory of an oscillator and its phase response
function can be determined numerically from a model of an oscillator and, at least
in principle, also experimentally (see, e.g., Galan et al. 2005).

In the final section of our study, we demonstrated how inputs to the dendritic
tree can set the phase-locked state and how in turn the phase-locked configuration
can control somatic spike generation. The first can for instance be accomplished
by changing the frequency of the oscillators with the external input. The soma
can subsequently detect the amplitude of the membrane potential fluctuations since
this is affected by the phase-locked configuration. The time scale at which the
dendritic oscillators move from one solution to another is set by the strength of
the interactions between the oscillators. This time scale can be much longer than
that of the different components of the system, e.g., the membrane time constant or
the period of the oscillators. In this way, the phase difference between the oscillators
can function as a memory. Related ideas have been previously discussed by Huhn
etal. (2005). We also showed that in the bistable phase-locked regime the state of the
dendrites is easily set by transient inputs and “read-out” by the soma. This also can
endow the neuron with a memory since brief external inputs can switch the neuron
from a spiking to a quiescent mode and vice versa. Interestingly, we showed that
both the turn-on and turn-off signals (inputs) can be excitatory, their final effects
defined by their timing.

The focus of our report is complementary to that of a recent theoretical study
of the subthreshold oscillations in the dendrites of mesencephalic dopaminergic
neurons (Medvedev et al. 2003). As these cells do not show any indication of distinct
dendritic oscillators, the whole cell was modeled as one continuous oscillator with
gradients in oscillator properties along the dendrites. Moreover, since there were no
distinct oscillators, in their analysis Medvedev and colleagues assumed strong volt-
age coupling between neighboring compartments, enforcing synchronized oscilla-
tions throughout the cell. In contrast, our approach assumed weak coupling between
the dendritic oscillators. This would not be appropriate for a spatially continuous
oscillator. However, it is not possible to state in general at what precise electrotonic
distance between two oscillators the weak coupling assumption becomes valid, since
it depends on the strength of the interaction currents with respect to the intrinsic
currents of the oscillators. However, our numerical simulations for a dendritic
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cable without the assumption of weak coupling, show that the phase-locking
behavior of Morris-Lecar oscillators is consistent with weak coupling.

We have set up an analytical framework for studying interacting dendritic
oscillators. This opens up a wide range of questions that were outside the scope
of the present study. For example, we focused our analysis on identical oscillators,
while it is likely that dendritic oscillators will vary in their properties throughout the
dendritic tree. For example, the diameter of the dendrites, which typically becomes
smaller with increasing distance from the soma, can affect the intrinsic frequency of
the oscillators. A gradient in the frequency of distinct oscillators is likely to lead to
more complex phenomena such as traveling waves (see, e.g., Kopell and Ermentrout
1986).

A major focus of our study was to explore how local dendritic mechanisms may
lead to oscillations expressed globally in the cell and hence visible at the soma,
for example, in somatic intracellular recordings. Our analysis showed that even
electrotonically far removed dendritic oscillators can lead to voltage oscillations
that significantly affect the soma voltage and hence spike generation. This suggests
several experimentally testable predictions. In one possible experiment, one can
take advantage of imperfect space clamp in a electrotonically extended neuron. As
a proof of principle, in a neuron where the oscillations are generated distally in
the dendritic tree, voltage clamping the soma would not block such oscillations,
and these should be seen in the current necessary to hold the somatic potential. In
fact, results from (Moore et al. 1999) point in this direction, where in chick spinal
cord neuron NMDA-dependent intrinsic oscillations were not blocked by somatic
voltage clamp. A further prediction stems from the weak coupling between active
dendrites. If active oscillations, such as periodically generated dendritic spikes, are
generated in different segments of the dendritic tree, our analysis predicts that such
spikes should interact and should exist in a stable phase-locked configuration, e.g.,
synchrony. Hence, should one of the dendritic segments be phase-shifted, such
perturbation should propagate to the other segment (the other segment should be
phase reset), the dendritic spikes should return to the phase-locked configuration,
and the time scale of this return should be relatively long and determined by the
electrotonic distance between the active segments. While difficult, such experiments
are possible using the multiple dendritic recording techniques, such as those
developed by Davie et al. (2006) in Purkinje cells.

A recent model for the grid field properties of the entorhinal cortex layer II
stellate cells (O’ Keefe and Burgess 2005; Burgess et al. 2007; Hasselmo 2007) relies
precisely on the ingredients considered in the present study. The model assumes
that different dendritic branches emanating from the soma of these cells function
as distinct oscillators. The oscillations are modulated by external inputs and the
interference of the oscillators eventually determines the somatic spiking. Crucially,
the model assumes that the dendritic oscillators operate independently. At a first
glance, our results appear to argue against this: the various oscillators should phase
lock (hence, lose their independence) even when the mutual coupling is weak.
However, in principle, the locking may be slower than the behavioral time scale,
allowing the oscillators to act quasi-independently on the behavioral time scale.
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Our analysis provides the appropriate framework to examine these issues: the
scaling of locking in time and the biophysical implementation of grid-field forma-
tion via dendritic oscillators (see Remme et al. 2010).

Above, we studied relatively simple cell geometries; however, these form basic
building blocks for more complex dendritic trees. Thus our framework should
be valid for understanding global voltage oscillations in more realistic models of
spatially extended cells. We would like to emphasize at this point that our general
framework should also hold when — in addition to the distinct oscillators distributed
throughout the dendritic tree — also the soma is regarded as an oscillator. These and
other issues will be addressed in future publications.

The framework we have developed, builds on the extensive mathematical theory
of coupled oscillators and nestles nicely below the complexity of full compartmental
models of neuronal dendritic trees. Yet our framework is sufficiently powerful and
clear to both take into account certain key aspects of the dendritic tree structure and
to be amenable to theoretical analysis of the dynamics of active dendrites and the
computational function of such dendritic structures. These remain an active focus
for further investigations.

Appendix

Interaction Functions for Two Weakly Coupled Dendritic
Oscillators

In order to determine the perturbations & pa g(¢) in (3.3), we need to solve (3.1) with
the boundary conditions from (3.2). To do so, we linearize (3.1) about the membrane
potential Vr to which the cable would relax if it was not driven by the oscillators,
yielding the quasi-active approximation for the cable (Sabah and Leibovic 1969;
Koch 1984). This approximation is appropriate as long as the voltage fluctuations
around Vi are sufficiently small. We define U(x,¢) as the difference between
the oscillating solution and the resting membrane potential Vg, i.e., U(x,t) =
V(x,t) — Vr and we define w(x, ¢) analogously as w(x,t) = m(x,t) — Mmoo (VR).
The equations describing the quasi-active cable now read

2
ciU(x, 1) = )Lza—U(x, 1) —yr U, 1) — ym(Vk — Em) w(x, 1)
ot 0x?

tma%w(x, t) = %moo(VR) U(x,t) —w(x,1), (3.6)
where yr = 1 + yYmMmoo(VR) is the total membrane conductance of the cable at Vx
divided by the cable’s membrane leak conductance.

The oscillators determine the voltage of the cable at x = 0 and x = [.
These voltages would need to be computed by solving the full system of equations
for the dynamics of each oscillator; however, since we consider weak coupling
(meaning that the trajectories are only weakly perturbed by the cable currents) we
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can make use of the fact that the trajectories are periodic. Hence, we expand Uy
and Up in a Fourier series, allowing for a possible phase difference ¢ (in radians)

between the oscillators:
(o]

U@O.t) =Ua(t)y = Y Upe,

n=—0o0

Ul,))y=Us(t +¢L) Z UB gi@nt+nd), (3.7)

n=—0oo

where w, = n2x/T, T is the intrinsic oscillator period, and membrane voltages
Ua and Ug (in mV) are measured relative to Vi.

The solution of the cable (3.6) will also be periodic and we can write the equation
in the frequency domain as

d* ~ H . HTm 77
AZWU,,(X) — (yR + 15 @2 o) +iw, (‘L’ T o) (a)ntm)z)) U,(x)=0.
(3.8)

Using the boundary conditions defined by (3.7) yields the solution:

>, . . ~,sinh(b (L—x/)L)) sinh (b, x /1)
{) = iwpt TTA s n 1(a),,t+n¢) 77B
Urn= ) &0, sinh (b, L) Z ¢ Un by L)

3.9)

n=—0oo n=—oo

where

H . M Tm
b, = |yw+ T o)y o) +iw, (‘L’ Try (wnrm)z) (3.10)
with u = yn(Vk — Em)%moo(VR). The parameter u determines whether the active
conductance that is present in the cable is regenerative (© < 0), meaning that
perturbations are amplified (e.g., a persistent sodium current), or restorative (u > 0),
meaning that the active conductance counteracts perturbations from ¥y (e.g., the
hyperpolarization activated inward current). As mentioned above, the perturbations
that the oscillators receive from the cable is proportional to the derivative of the
voltage with respect to x. For the oscillator at x = 0, the perturbation from the
cable is

0
palt:9) = a— U(,1t)
= l i ei(&)nl+n¢) ﬁB bn _ l i eia),,l‘ ﬁAb coth (b L)
A = "sinh(b, L) A n on n
— l io: iwyt bn (ijB ein¢7 _ fjA COSh(bn L)) ) (311)
A sinh(b, L) * " "

—00

n

The perturbation from the cable at x = / can be derived in the same way.
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We have now derived the perturbations that an oscillator receives depending on
the phase difference ¢ between the oscillators. In order to complete our analysis,
we also need to compute how these perturbations act back on the phases of the
two oscillators and thus on the phase difference. Each of the oscillators is described
explicitly by a system of equations determining the dynamics of its voltage (3.3).
However, if we assume that the periodic solutions of such a system of equations
are sufficiently attractive and the coupling is sufficiently weak we can write an
equivalent phase model (see Izhikevich 2007). The phases of the two dendritic
oscillators, 84 (¢) and 05 (¢) (in radians), evolve as

. 2 T
Or = —— +eZa(Oh) pa | 0529 ).
T 2w
. 2 T
QB = —+SZB(QB)pB 9—,¢ N (312)
T 2
where 27” is the intrinsic oscillator frequency. The second term describes the effect

of the cable on the phase. Z4 g(6) are the infinitesimal phase response functions
of the respective oscillators and describe how much their phases are advanced or
delayed in response to an infinitesimally small and short perturbation.

Since we consider weak interactions between the oscillators, ¢ changes slowly
with respect to the oscillation period. Therefore, we can average the interaction
between the oscillators (i.e., the products Z pa and Zp pp in (3.12)) over a cycle
and obtain the interaction functions Ha g (¢p). Ha(¢) describes the average effect on
the phase of oscillator A over one cycle as a function of ¢:

1 [ T
HAG) = 5 /0 zA(e)pA(eg;qs) a6 (3.13)

with ps given by (3.11). The interaction function Hgp(¢) can be determined
analogously. Note that with identical oscillators, we have Hg(¢p) = Ha(—¢).

Oscillator Models

The equations for the Morris—Lecar type II oscillator (Morris and Lecar 1981) with
parameters as in Ermentrout (1996) read

dv
Cma =—g(V—EL) = gww(V — Ey) — gmmoo(V)(V — Em) + 1

dw  weo(V)—w
i w—rw(V) . (3.14)
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The Morris-Lecar type II oscillator uses C,, = 1 uF/em?, gi = 0.5mS/cm?,
gw = 2mS/cm2,gm = 1.1mS/cm?, E,. = —=50mV, E, = =70mV, E,, = 100mV,
¢ = 0.2, 1 = 25uA/cm?, and where mqo(V) = %[1 + tanh((V + 1)/15)],
Woo(V) = $[1 + tanh(V/30)], and 7., (V) = 1/ cosh(V/60).

The oscillatory dynamics of the subthreshold oscillator emerge from the interac-
tion between the persistent sodium current /x,p and the hyperpolarization activated
inward current /. The current descriptions are based on the data from Dickson
et al. (2000) and Fransén et al. (2004). The dynamics of [, are described by
a single gating variable w(¢) with activation function wee (V) and time constant
7,(V) /¢ (in milliseconds). The voltage-dependent activation of Ix,p is described
by meo(V) and is instantaneous. The equations are the same as for the Morris—
Lecar type II oscillator with Cy, = 1 uF/ecm?, g = 0.3 mS/cm?, g, = 1.5mS/cm?,
gm = 0.076 mS/cm?, E, = —69mV, E,, = —20 mV, E,, = 48mV, ¢ = 0.014,
I = 0.9 pA/cm?, and where moo(V) = [1 + tanh((V + 48.7)/8.8)], woo (V) =
%[1 + tanh((V 4 74.2)/ — 14.4)], and ty (V') = 1/ cosh((V + 74.2)/—28.8).
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